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1. Normalization of the dI/dV spectra 

To make charging peaks features in the dI/dV spectra more visible, we reduce the 

background signal through a special normalization process. Here we take Fig. 2a and 2b in the 

main text as an example to illustrate this process. We first note that the strong background signal 

is mainly determined by the graphene density of states, which do not significantly change with the 

tuning of the backgate voltage VBG. On the other hand, the tip-induced charging peaks have a 

strong dependence on VBG (see detailed explanation in the main text), and show a very dispersive 

feature in the 2D plot of the VBG-dependent dI/dV spectra. To obtain the VBG-independent 

background signal we average all the dI/dV spectra (which average out the fast-changing charging 

peaks) (blue curve in Fig. S1b). Dividing the raw dI/dV spectra (several typical raw dI/dV spectra 

are shown in Fig. S1b as red curves) by this averaged dI/dV spectra allows us to obtain the 

normalized dI/dV spectra. Several typical normalized dI/dV spectra are shown in Fig. S1c. The 

complete data set of the normalized dI/dV spectra is shown in the 2D color plot in Fig. S1d (same 

as Fig. 2b in the main text).  

The same normalization process is applied to the high-resolution VBG-dependent dI/dV 

spectra measured around the n = 2/3 state shown in Fig. 2c in the main text (with the raw data 

shown in Fig. S1e). Several typical raw dI/dV spectra and the corresponding normalized spectra 

are shown in Fig. S1f and S1g, respectively. The complete data set of the normalized dI/dV spectra 

are shown in Fig. 2c in the main text (also reproduced in Fig. S1h). 
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Figure S1. Normalization of the VBG-dependent dI/dV spectra. a. 2D plot of the raw data for 

the VBG-dependent dI/dV spectra, same as Fig. 2a in the main text. b. The red curves show 

typical dI/dV spectra measured at different VBG, while the blue curve shows the mean dI/dV 

spectra averaged over all spectra shown in a. c. Normalized dI/dV spectra obtained by dividing 

the raw spectra (red curves) by the averaged spectra (blue curves) shown in b. d. 2D plot of the 

normalized data shown in a, same as Fig. 2b in the main text. e. 2D plot of the raw data for the 

dI/dV spectra shown in Fig. 2c of the main text. f. The red curves show several typical dI/dV 

spectra measured at different VBG, while the blue curve shows the mean dI/dV spectra averaged 

over all spectra shown in e. g. Normalized dI/dV spectra obtained by dividing the raw spectra 

(red curves) by the average spectra (blue curve) shown in f. g. 2D plot of the normalized data 

shown in e, same as Fig. 2c in the main text. h. 2D plot of the normalized data shown in e. 
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Spectra in b, c, f, and g are shifted vertically for clarity, with the corresponding zero reference 

point labeled by black dashed lines. 
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2. Origin of the charging dI/dV peak 

We first note that the tip-induced charging peak assisted by the long-range tip-sample 

Coulomb interactions has been studied in several different material systems where the general 

mechanism has been described1-5. Below, we focus on its application in our SSEC spectroscopy.  

Fig. S2a reproduces the charging peak phase diagram in Fig. 2e of the manuscript. Due to 

the tip-graphene work function difference (Pt/Ir tip :5.0eV to 5.9eV, top graphene: ~4.5eV), a 

negative bias voltage Vbias0 is required to compensate the work function difference so that a zero 

electrical field is between the tip and the charge neutral graphene.  The charging (electron injection) 

and discharging (hole injection) events take place at a bias voltage Vbias lower and higher than 

Vbias0, respectively. 

Let’s consider three representative charging transition regions denoted by the green arrows 

and labeled as A, B, and C in Figure S2a: A. Electron excitation with Vbias < Vbias0 <0; B. Hole 

excitation with Vbias0 <Vbias < 0; and C. Hole excitation with Vbias > 0. The graphene layer is close 

to the charge neutral point. In region A, the excitation of an electron quasiparticle in the TMD 

layer with an increased negative Vbias makes the top monolayer graphene more hole doped locally 

due to the Coulomb interaction between the TMD and graphene layers. It lowers the local graphene 

Fermi level (Fig. S2b) that increases the number of available tunneling channels (labeled in blue). 

Consequently, it increases the absolute tunneling current (i.e., the current becomes more negative, 

right pannel of Fig. S2b), yielding a dI/dV peak. In region B, the excitation of a hole quasiparticle 

in the TMD with a decreased negative Vbias lifts the monolayer graphene Fermi level (Fig. S2c), 

that decreases the number of available tunneling channels and hence decreases the absolute 

tunneling current (less negative, right pannel of Fig. S2c). In region C, the excitation of a hole in 
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the TMD layer with an increased positive Vbias similarly lifts the top graphene Fermi level, but it 

increases the number of available tunneling channels (due to the reversed Vbias polarity, Fig. S2d) 

and hence increase the absolute tunneling current (more positive current, right pannel of Fig. S2d).  

Based on the above analysis, there is always a jump of tunneling current whenever an 

electron or hole charging event takes place due to the resulting change in the local graphene doping. 

They all lead to a dI/dV peak on the top graphene sensing layer, as observed in our experiment. 

 

Figure S2. Illustration for the origin of the dI/dV charging peaks. a. the charging peak phase 

diagram reproduced from Fig. 2e of the manuscript. Three representative charging transition 

regions are considered here: A. Electron excitation with Vbias < 0, B. Hole excitation with Vbias < 

0, and C. Hole excitation with Vbias > 0 (labeled with green arrows). b. Tunneling energy diagram 

before and after excitation A. The graphene layer is close to the charge neutral point. An electron 
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excitation in TMD driven by an increased negative Vbias makes the top graphene more hole-doped 

and lowers its Fermi level EFGr. It increases the number of available tunneling channels (labeled in 

blue) and hence the tunneling current (right pannel). c. Tunneling energy diagram before and after 

excitation B. A hole excitation in the TMD layer driven by a decreased negative Vbias makes the 

graphene more electron doped. It decreases the available tunneling channels and hence the 

tunneling current (right pannel). d. Tunneling energy diagram before and after excitation C. A hole 

excitation in the TMD layer driven by an increased positive Vbias similarly makes the graphene 

more electron doped. However, it increases the available tunneling channels (labeled in red) due 

to the reversed Vbias polarity and hence enlarges the tunneling current (right pannel). 
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3. Determination of the filling factors via dI/dV mapping 

The filling factor of the moire superlattice is not only determined by the simple capacitor 

model, but also directly through dI/dV mapping of the electron lattice. For example, the filling 

factor of the n=2/3 state can be determined through the mapping shown in Fig. 3 in the main text.  

Several typical results are shown in Fig. S3, including mapping for addition of electrons to the n 

= 0 state (Fig. S3a and S3b) and addition of holes in the n = 1 state (Fig. S3c and S3d). 

 

Figure S3. Determination of the filling factor. a. Typical STM topography of sensing layer. 

Red dots denote electron excitation locations. b. dI/dV mapping of the electron quasiparticle in 

the n = 0 state measured in the same area as in a (Vbias = -0.75V, VBG = 0.43V, VTG = 0.52V). 

The position of the electrons is labeled with red solid dots c. Typical STM topography of sensing 

layer. Red circles denote hole excitation locations. d. dI/dV mapping of the hole quasiparticle in 

the n =1 state measured in the same area as in c (Vbias = 0.20V, VBG = 2.4V, VTG = 0.52V). The 

positions of the holes are labeled with red circles. 
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4. Electrostatic simulation of the correlation between 𝜶𝜶 and 𝜶𝜶/𝜷𝜷 

In this section, we introduce details for the electrostatic simulation of correlation between 

𝛼𝛼 and 𝛼𝛼/𝛽𝛽, where 𝛼𝛼 and 𝛽𝛽 are the tip-t-WS2 and backgate-t-WS2 coupling constants, respectively. 

Particularly, the graphene quantum capacitance effect is included in the simulation. The backgate 

graphite is modeled by an infinitely large metallic plate. Due to the unknown geometry of the STM 

tip, we model the tip in two extreme situations: (1) as a metallic cone (illustrated in Fig. S4a) and 

(2) as a metallic sphere (illustrated in Fig. S4d).  In the conic tip model, the tip geometry is 

controlled by the half cone angle 𝜃𝜃 and tip height ℎ (separation between tip apex and the graphene 

surface), while the spherical tip model, the tip geometry is controlled by the sphere radius and tip 

height (separation between sphere bottom and the graphene surface). The t-WS2 moire 

heterostructure is regarded as a thin insulator since it is in a correlated insulating state. The t-WS2 

is incorporated into the surrounding hBN and regarded as an insulator with the same dielectric 

constant as the hBN. The graphene is modeled by a special boundary condition whose electrical 

potential 𝑉𝑉𝐺𝐺𝐺𝐺 is related to its charge density 𝜌𝜌𝐺𝐺𝐺𝐺 due to the graphene quantum capacitance: 𝑉𝑉𝐺𝐺𝐺𝐺 =

𝑉𝑉𝐺𝐺𝐺𝐺(𝜌𝜌𝐺𝐺𝐺𝐺), as described below. 

The graphene surface electrical potential 𝑉𝑉𝐺𝐺𝐺𝐺(𝜌𝜌𝐺𝐺𝐺𝐺) , namely its vacuum level, can be 

determined in the following way. Since the graphene is connected to a voltage source, meaning its 

chemical potential is fixed externally, then the change of the graphene surface electrical potential 

Δ𝑉𝑉𝐺𝐺𝐺𝐺 = 𝑉𝑉𝐺𝐺𝐺𝐺 − 𝑉𝑉𝐺𝐺𝐺𝐺0 can be determined as Δ𝑉𝑉𝐺𝐺𝐺𝐺 = Δ𝐸𝐸𝑓𝑓/𝑒𝑒, where Δ𝐸𝐸𝑓𝑓 = 𝐸𝐸𝑓𝑓 − 𝐸𝐸𝑓𝑓0 is the graphene 

Fermi level change. Here 𝑉𝑉𝐺𝐺𝐺𝐺0 and 𝐸𝐸𝑓𝑓0 are the graphene surface electrical potential and Fermi level 

at charge neutrality (𝜌𝜌𝐺𝐺𝐺𝐺 = 0). For simplicity, we assume 𝑉𝑉𝐺𝐺𝐺𝐺0 = 0 and 𝐸𝐸𝑓𝑓0 = 0. Therefore, we 
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have 𝑉𝑉𝐺𝐺𝐺𝐺 = 𝐸𝐸𝑓𝑓/𝑒𝑒. The relation between the graphene Fermi level 𝐸𝐸𝑓𝑓 and its carrier density 𝑛𝑛𝐺𝐺𝐺𝐺 is 

determined by  

𝑛𝑛𝐺𝐺𝐺𝐺 =

⎩
⎪
⎨

⎪
⎧� 𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺(𝐸𝐸)𝑑𝑑𝐸𝐸

𝐸𝐸𝑓𝑓

0
, (𝐸𝐸𝑓𝑓 ≥ 0)

� 𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺(𝐸𝐸)𝑑𝑑𝐸𝐸
0

𝐸𝐸𝑓𝑓
, (𝐸𝐸𝑓𝑓 < 0)

, 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝐺𝐺𝐺𝐺(𝐸𝐸) = 2
𝜋𝜋
⋅ |𝐸𝐸|

(ℏ𝑣𝑣𝐹𝐹)2 is the graphene density of states per unit area. Here 𝑣𝑣𝐹𝐹 = 106𝑚𝑚/𝑠𝑠 is 

the Femi velocity of the graphene. Using 𝜌𝜌𝐺𝐺𝐺𝐺 = −𝑒𝑒𝑛𝑛𝐺𝐺𝐺𝐺 , we obtain the following boundary 

condition for the graphene plane 

𝑉𝑉𝐺𝐺𝐺𝐺(𝜌𝜌𝐺𝐺𝐺𝐺) =

⎩
⎪
⎨

⎪
⎧√𝜋𝜋ℏ𝑣𝑣𝐹𝐹

𝑒𝑒
⋅ �−

𝜌𝜌𝐺𝐺𝐺𝐺
𝑒𝑒

, (𝜌𝜌𝐺𝐺𝐺𝐺 < 0)

−
√𝜋𝜋ℏ𝑣𝑣𝐹𝐹
𝑒𝑒

⋅ �
𝜌𝜌𝐺𝐺𝐺𝐺
𝑒𝑒

, (𝜌𝜌𝐺𝐺𝐺𝐺 ≥ 0)
, 

This boundary condition reflects the quantum capacitance of the graphene and its partial screening 

effect. 

In the simulation, the boundary conditions for the tip and backgate are set at 𝑉𝑉 = 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 

𝑉𝑉 = 𝑉𝑉𝐵𝐵𝐺𝐺 , respectively. To make the simulation more computable we have a cylindrically truncated 

grounded surface enclose the simulation center. The dielectric constants in the region above and 

below the graphene are set to 𝜀𝜀𝑣𝑣𝑏𝑏𝑣𝑣 = 𝜀𝜀0 and 𝜀𝜀ℎ𝐵𝐵𝐵𝐵 = 4.2𝜀𝜀0, respectively, where 𝜀𝜀0 is the vacuum 

dielectric constant. 𝛼𝛼 and 𝛽𝛽 are obtained via monitoring the responses of the electrical potential 

change ΔΦ at the position of the charged site (𝑟𝑟 = 5.4𝑛𝑛𝑚𝑚 when the tip is fixed at the three-site 

symmetric point) in the TMD layer with the following parameters: 𝛼𝛼: Vbias = 145mV and VBG = 0, 

and 𝛽𝛽: Vbias = 0 and VBG = 71 mV.  



11 
 

Fig. S4b and S4c show two typical simulated electrical potential distribution for the conic tip 

model with either only nonzero VBG applied (Fig. S4b, Vbias = 0 and VBG = 71 mV) or only 

nonzero Vbias applied (Fig. S4c, Vbias = 145mV and VBG = 0). The simulation parameters used 

here are 𝜃𝜃 = 54.95° and ℎ = 1𝑛𝑛𝑚𝑚. Fig. S4e and S4f show two typical simulated electrical 

potential distribution for the spherical tip model with either only VBG applied (Fig. S4e, Vbias = 0 

and VBG = 71 mV) or only Vbias applied (Fig. S4f, Vbias = 145mV and VBG = 0). The simulation 

parameters used here are 𝑅𝑅 = 14𝑛𝑛𝑚𝑚 and ℎ = 2.06𝑛𝑛𝑚𝑚.  

Next, we investigate the tip geometry dependence of 𝛼𝛼 and 𝛽𝛽. For clarity, we use the 

subscript “cone” and “sphere” to distinguish the two different models. For the conic model, Fig. 

S5a and S5b shows the simulated for 𝛼𝛼𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 (Fig. S5a) and 𝛽𝛽𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 (S5b) as functions of 𝜃𝜃 and ℎ. 

Particularly, 𝜃𝜃 ranges from 15° to 85°, and ℎ ranges from 0.1nm to 9nm. Such a range should be 

large enough to cover the situation of realistic STM tips. The change of the tip geometry 

significantly affects individual coupling constants, where 𝛼𝛼𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 is affected more while 𝛽𝛽𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 is 

affected less. To compare with the experimentally determined 𝛼𝛼/𝛽𝛽 ratio (reflected by the charging 

peak slopes in Fig. 2b and 2c of the manuscript), Fig. S5c displays the simulated 𝛼𝛼𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐/𝛽𝛽𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 as 

functions of 𝜃𝜃 and ℎ. We can similarly investigate the geometry dependence of the spherical model. 

Fig. S5d and S5e show the simulated for 𝛼𝛼𝑏𝑏𝑠𝑠ℎ𝑐𝑐𝐺𝐺𝑐𝑐 (Fig. S5d) and 𝛽𝛽𝑏𝑏𝑠𝑠ℎ𝑐𝑐𝐺𝐺𝑐𝑐 (S5e) as functions of 𝑅𝑅 

and ℎ. Fig. S5f show the simulated ratio 𝛼𝛼𝑏𝑏𝑠𝑠ℎ𝑐𝑐𝐺𝐺𝑐𝑐/𝛽𝛽𝑏𝑏𝑠𝑠ℎ𝑐𝑐𝐺𝐺𝑐𝑐 as functions of 𝑅𝑅 and ℎ. 

Now we can examine the correlation of the coupling constant 𝛼𝛼 (to de determined) and the 

ratio 𝛼𝛼/𝛽𝛽 (experimentally measurable) for different tip geometries (varying tip height, cone angle, 

sphere radius). Fig. S6a shows the scatter plot of the 𝛼𝛼 value from Fig. S5a and S5d versus the 

𝛼𝛼/𝛽𝛽 value from Fig. S5c and S5f for all studied tip geometries. The conic and spherical results are 
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plotted with blue and orange points, respectively. It can be seen that 𝛼𝛼 and 𝛼𝛼/𝛽𝛽 exhibit an almost 

one-to-one monotonic correspondence that is largely independent of the detailed tip geometry. Fig. 

S6b shows a zoom-in scatter plot of 𝛼𝛼 versus 𝛼𝛼/𝛽𝛽 corresponding to the dashed box region in Fig. 

S6a, further confirming the well-defined one-to-one correspondence between 𝛼𝛼  and 𝛼𝛼/𝛽𝛽 

independent of the tip geometry. Such a geometry-independent correspondence naturally defines 

a calibration relation enabling to reliably determine the coupling constant 𝛼𝛼 = 0.16 based on the 

experimentally determined 𝛼𝛼/𝛽𝛽 = 0.51. The uncertainty of the obtained 𝛼𝛼 due to the unknow tip 

geometry (such as the vastly different cone and sphere) is less than 3%. We note that this simulated 

coupling constant is close to values reported in previous work6. 

Finally, we note that the potential response of the charged site ΔΦ is not strictly linear with 

the change of 𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and 𝑉𝑉𝐵𝐵𝐺𝐺 . This is shown in Fig. S7a (ΔΦ as a function of Vbias) and S7b (ΔΦ as 

a function of VBG). This effect occurs because at large tip bias or backgate voltage the graphene is 

strongly doped and has a larger density of states at the Fermi level and behaves more like a metal. 

However, in the measurement range Vbias < 200mV and VBG <100mV the response can still be 

approximately regarded as being linear. 
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Figure S4. Electrostatic simulation of the SSEC spectroscopy. a. Schematic of the conic tip 

model. The tip is represented by an ideal metallic cone with half cone angle 𝜃𝜃 and tip height ℎ 

(separation between tip apex and the graphene surface). The backgate is modeled by an ideal 

metallic plate. The graphene is modeled as follows: we set the boundary conditions on the 

graphene surface to be that the electrical potential is determined by the charge density so that the 

quantum capacitance of the graphene can be correctly treated. See more details in section 3. b-c. 

Simulated electrical potential distribution for the conic tip model with (b) VBG = 71mV and Vbias 

= 0, and (c) VBG = 0 and Vbias = 145mV. The simulation parameters used are 𝜃𝜃 = 54.95° and 

ℎ = 1𝑛𝑛𝑚𝑚. The position of the t-WS2 layer is not depicted here since it is regarded as an insulator 

with a dielectric constant equivalent to that of hBN. d. Schematic of the spherical tip model. The 

configuration is mostly the same as the one in (a) expect that the tip is modeled as an ideal 

metallic sphere with radius R here. e-f. Simulated electrical potential distribution for the 

spherical tip model with (b) VBG = 71mV and Vbias = 0, and (c) VBG = 0 and Vbias = 145mV. The 

simulation parameters used are 𝑅𝑅 = 14𝑛𝑛𝑚𝑚 and ℎ = 2.06𝑛𝑛𝑚𝑚.  
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Figure S5. Simulated results for the tip-TMD coupling constant. a-c. Simulated results for 

the conic tip model: (a) 𝛼𝛼𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐, (b) 𝛽𝛽𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐, and (c) 𝛼𝛼𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐/𝛽𝛽𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 as functions of the tip height ℎ and 

the cone angle 𝜃𝜃. Contour lines are labeled in red in (a-c) for clarity. a-c. Simulated results for 

the conic tip model: (a) 𝛼𝛼𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐, (b) 𝛽𝛽𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐, and (c) 𝛼𝛼𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐/𝛽𝛽𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 as functions of the tip height ℎ and 

the cone angle 𝜃𝜃. d-f. Simulated results for the conic tip model: (d) 𝛼𝛼𝑏𝑏𝑠𝑠ℎ𝑐𝑐𝐺𝐺𝑐𝑐, (e) 𝛽𝛽𝑏𝑏𝑠𝑠ℎ𝑐𝑐𝐺𝐺𝑐𝑐, and (f) 

𝛼𝛼𝑏𝑏𝑠𝑠ℎ𝑐𝑐𝐺𝐺𝑐𝑐/𝛽𝛽𝑏𝑏𝑠𝑠ℎ𝑐𝑐𝐺𝐺𝑐𝑐 as functions of the tip height ℎ and the cone angle 𝜃𝜃. Contour lines are labeled 

in red in (a-f) for clarity. 
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Figure S6. Simulated results for 𝜶𝜶 as a function of 𝜶𝜶/𝜷𝜷. a. Scatter plot of the 𝛼𝛼 data in Fig. 

R5a and R5d versus the 𝛼𝛼/𝛽𝛽 data in Fig. R5c and R5f. Results for the conic and spherical 

models are plotted with blue and orange points, respectively. b. Zoom-in scatter plot of 𝛼𝛼 versus 

𝛼𝛼/𝛽𝛽 corresponding to the dashed box region in (a). 𝛼𝛼 and 𝛼𝛼/𝛽𝛽 exhibit well-defined one-to-one 

monotonic correspondence that is nearly independent of the specific tip geometry parameters (ℎ 

and 𝜃𝜃 (or R)).  Such a correspondence naturally defines a calibration relation that enable us to 

obtain the tip-TMD coupling constant 𝛼𝛼 = 0.16 from the experimentally determined ratio 𝛼𝛼
𝛽𝛽

=

0.51.  
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Figure S7 Potential change 𝚫𝚫𝚫𝚫 as functions of Vbias and VBG for the conic tip model. a. ΔΦ 

at r=5.4nm in the TMD layer for different Vbias values at VBG = 0. b. Potential change ΔΦ at 

r=5.4nm in the TMD layer for different VBG values at Vbias = 0. h = 1nm and 𝜃𝜃 = 54.95° used 

for simulating the conic tip model here. 
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5. VTG dependence of the dI/dV spectra 

Fig. S8 shows the normalized dI/dV spectra around the n = 2/3 state measured at the BS/S 

site with VTG = 0.52V (Fig. S8a) and 0.49V (Fig. S8b). We note that even a small change of VTG 

can significantly change the relative doping in the graphene and the TMD layer (due to the very 

thin hBN in between) and modify the discharging behavior. As shown in Fig. S8, decreasing VTG 

from 0.52V (Fig. S8a) to 0.49V (Fig. S8b) shifts the hole charging peak branch to a more 

positive Vbias and a much larger VBG.  As shown in Fig. S8b, the hole charging branch is 

prominent over a large Vbias range at VTG = 0.49V, which extends to the Vbias > 0 region. In 

contrast, Fig. S8a shows that the hole charging branch has a narrower range for VTG = 0.52V. 

Therefore, we chose VTG = 0.49V to best show the hole charging ring evolution behavior in Fig. 

3h-k of the main text. 

 

Figure S8. VTG-dependent normalized dI/dV spectra for the n = 2/3 state. a. VTG = 0.52V, b. 

VTG =0.49V. Both are measured at the BS/S site around the n = 2/3 state with the same tip status. 

Red solid arrows label the electron charging branch while red hollow arrow labels the hole 

charging branch. 



18 
 

6. Stacking site dependence of the dI/dV spectra 

Fig. S9 shows the normalized dI/dV spectra measured at the BS/S site (Fig. S9a, 

reproduced from Fig. 2b of the main text), the electron filled BW/W site (Fig. S9b), and the 

electron empty BW/W site (Fig. S9c) for the n = 2/3 generalized Wigner crystal state under the 

same tip status. Compared with the BS/S site (Fig. S9a), the electron filled BW/W site (Fig. S9b) 

features a stronger and more dispersive hole charging peak (top right) and a weaker and less 

dispersive electron charging peak (bottom left). The electron empty BW/W site (Fig. S9c) shows 

an opposite feature: stronger and more dispersive electron charging peak (bottom left) and 

weaker and less dispersive hole charging peak (top right). The red dots and circles in Fig. 2c of 

the main text are also labeled in Fig. S9a-c at the same position for reference.  

 

Figure S9. Site-dependent normalized dI/dV spectra for the n = 2/3 state. a. BS/S site, 

reproduced from Fig. 2b of the main text. b. electron filled BW/W site. c. electron empty BW/W 

site. VTG is fixed at 0.52V. The red dots correspond to VBG = 1.50V and Vbias = -0.59V while the 

red circles correspond to VBG = 1.65V and Vbias = -0.14V. 
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7. Determination of 𝚫𝚫𝑽𝑽𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 for the gaps of the correlated states 

We note that in Fig. 2b and c, there exists a fluctuation of Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. To obtain the values of 

Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 in a more precise and statistical way, we performed line fitting of the dispersive electron 

and hole charging peaks and extract the value of Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 by evaluating the horizontal gap between 

the fitted lines. The details of this fitting procedure are described below. 

We first identify the peak positions of the closest pair of electron and hole charging peaks 

in Fig. 2b and c of the main text (i.e. charging peaks that are adjacent to the gap instead of the 

additional outside charging peak due to more distant moiré sites). The results are shown in Fig. 

S10a-c for the n = 1/3, 2/3, and 1 states, respectively. The blue and yellow scatter points 

correspond to the electron and hole charging peaks, respectively. We next fit the dispersive 

electron and hole charging peaks with two parallel lines: 1). 𝑉𝑉𝐵𝐵𝐺𝐺 = 𝑘𝑘(𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑉𝑉𝑐𝑐) and 2). 𝑉𝑉𝐵𝐵𝐺𝐺 =

𝑘𝑘(𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑉𝑉ℎ). The fitted lines are shown in Fig. S10 as dashed lines. Here we have three 

independent fitting parameters: 𝑘𝑘 (the slope of the two parallel lines), 𝑉𝑉𝑐𝑐 and 𝑉𝑉ℎ (horizontal bias 

offset for the electron and hole charging branch respectively). Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is determined as Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =

𝑉𝑉ℎ − 𝑉𝑉𝑐𝑐. The fitted results are n = 1/3: Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.31𝑉𝑉 ± 0.07𝑉𝑉, n = 2/3: Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.28𝑉𝑉 ±

0.07𝑉𝑉, and n = 1: Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.66𝑉𝑉 ± 0.18𝑉𝑉. 
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Figure S10. Determination of 𝚫𝚫𝑽𝑽𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃.  Scatter points showing the peak positions of the closest 

pair of electron and hole charging peaks identified from Fig. 2b,c of the main text (blue: electron 

charging peak; yellow: hole charging peak). Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 for the n = (a) 1/3, (b) 2/3, and (b) 1 

correlated states are determined through fitting the dispersive electron and hole charging peaks 

with two parallel lines and extracting the horizontal gaps (i.e., Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) between the fitting lines. 

The fitting results are n = 1/3: Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.31𝑉𝑉 ± 0.07𝑉𝑉, n = 2/3: Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.28𝑉𝑉 ± 0.07𝑉𝑉, and 

n = 1: Δ𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 0.66𝑉𝑉 ± 0.18𝑉𝑉. 
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8. Spatial distribution of the thermodynamic gaps 

Here we demonstrate two examples on how the high spatial resolution of our technique 

may facilitate the study of moiré correlated electrons. 

In Fig. S11 we show the thermodynamic gap distribution in a region with moiré potential 

disorder. Fig. S11a shows a topographic image of the moiré superlattice (measured in the same 

region as the one shown in Fig.3d-g of the main text), where no obvious lattice distortion is 

observed. We next measured the dI/dV spectra at all the BS/S sites labeled with red dots in Fig. 

S11a with VBG = 1.50V and VTG = 0.52V, that enable us to obtain the thermodynamic gap for n = 

2/3 state Δ𝑐𝑐=2/3 at different sites. The result is shown in Fig. S11b, where each hexagon 

corresponds to one BS/S site (red dot) in Fig. R1a. The Δ𝑐𝑐=2/3 shows a non-uniform distribution. 

It is lower at the bottom left corner and higher at the top right corner. This gap distribution is 

consistent with the nonuniform charging maps shown in Fig.3d-g. 

We next show the thermodynamic gaps measured at regions with different moiré 

superlattice structures. Fig. S12a-c shows topographic images of the moiré superlattices 

measured in three different regions that exhibit different moiré period 𝐿𝐿 and moiré unit cell 

distortion 𝛿𝛿 (see the exact definition below) (hexagons are marked to indicate the lattice 

distortion). The thermodynamic gaps are measured in the three regions. The lattice structure and 

the gap values are summarized in Fig. S12d, which shows smaller gaps in moiré superlattices 

with larger period/distortion. 
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Unit cell distortion 𝛿𝛿 in the moiré superlattice was modeled by defining strained moiré 

primitive lattice vectors: 𝒃𝒃𝑏𝑏 → 𝐿𝐿𝑹𝑹(𝜃𝜃)𝑺𝑺(𝛿𝛿)𝑹𝑹(−𝜃𝜃)𝒆𝒆𝑏𝑏, where 𝑹𝑹 is a 2D rotational matrix, 𝑺𝑺(𝛿𝛿) =

�
1 + 𝛿𝛿

2
0

0 1 − 𝛿𝛿
2

�, 𝒆𝒆𝑏𝑏 is the unit primitive lattice vector, and 𝐿𝐿 is the (undistorted) moiré period.  

We believe that the high spatial resolution of our technique could enable more fruitful 

studies of how moiré structure and disorders impact the moiré correlated electrons, which will be 

explored in further works. 

 

Figure S11. Spatial mapping of 𝚫𝚫𝒏𝒏=𝟐𝟐/𝟑𝟑. a. Topographic image of a typical moiré superlattice 

region (the same as the one shown in Fig. 3d-g of the main text). dI/dV spectra are measured at 

all the BS/S sites labeled with red dots that enables us to extract the values of Δ𝑐𝑐=2/3. VBG = 

1.50V and VTG = 0.52V. d. Mapping of Δ𝑐𝑐=2/3. Each hexagon corresponds to one BS/S site (red) 

in (a) with the filling color represent the value of Δ𝑐𝑐=2/3.  
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Figure S12. Thermodynamic gaps measured in different moiré superlattice regions. a-c. 

Typical topographic images of moiré superlattices measured in three different regions that 

exhibit different moiré lattice structure. d. Table that summarizes the lattice constant (L), moiré 

unit cell distortion (𝛿𝛿), and thermodynamic gaps for the n = 1/3, 2/3, and 1 states (Δ𝑐𝑐=1/3, 

Δ𝑐𝑐=2/3, and Δ𝑐𝑐=1). 
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