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ABSTRACT

Large stochastic population abundance fluctuations are ubiquitous across the tree of life1–7, impacting the predictability of
population dynamics and influencing eco-evolutionary outcomes. It has generally been thought that these large abundance
fluctuations do not strongly impact evolution, as the relative frequencies of alleles in the population will be unaffected if the
abundance of all alleles fluctuate in unison. However, we argue that large abundance fluctuations can lead to significant
genotype frequency fluctuations if different genotypes within a population experience these fluctuations asynchronously. By
serially diluting mixtures of two closely related E. coli strains, we show that such asynchrony can occur, leading to giant
frequency fluctuations that far exceed expectations from models of genetic drift. We develop a flexible, effective model that
explains the abundance fluctuations as arising from correlated offspring numbers between individuals, and the large frequency
fluctuations result from even slight decoupling in offspring numbers between genotypes. This model accurately describes the
observed abundance and frequency fluctuation scaling behaviors. Our findings suggest chaotic dynamics underpin these
giant fluctuations, causing initially similar trajectories to diverge exponentially; subtle environmental changes can be magnified,
leading to batch correlations in identical growth conditions. Furthermore, we present evidence that such decoupling noise is
also present in mixed-genotype S. cerevisiae populations. We demonstrate that such decoupling noise can strongly influence
evolutionary outcomes, in a manner distinct from genetic drift. Given the generic nature of asynchronous fluctuations, we
anticipate that they are widespread in biological populations, significantly affecting evolutionary and ecological dynamics.

Introduction1

The dynamics of evolution fundamentally depends on the interplay between the deterministic and stochastic forces acting on2

populations. Natural selection pushes allele frequencies up or down in the population, depending on the relative allele fitness,3

while genetic drift causes random allele frequency fluctuations, with no preferred direction8–12. Theoretical population genetics4

has provided many examples of how natural selection and genetic drift can interact with each other. For example, the probability5

that a mutant will establish in a population is determined primarily by the stochastic dynamics dominated by genetic drift at low6

mutant frequencies, followed by deterministic dynamics dominated by natural selection at higher frequencies10, 13, 14. Even in7

purely neutral scenarios, stochastic forces alone can often lead to surprisingly complex evolutionary dynamics15–18.8

Ecological dynamics can also be strongly influenced by stochastic demographic fluctuations. It has long been noted that9

populations across the tree of life exhibit strong abundance fluctuations, nearly universally6, 19, 20. In many of the documented10

cases, the abundance fluctuations follow Taylor’s power law1–5–a power-law relationship between the mean and variance of11

the abundance fluctuations. Many different ecological processes can cause abundance fluctuations that obey Taylor’s law,12

including fluctuating environments21, spatial effects1, 22, or chaotic dynamics23, 24. Chaotic population dynamics in particular13

have captured the interest of ecologists for decades, ever since it was noted that even simple models of single populations14

can display chaotic dynamics25. However, it is generally considered challenging to definitively demonstrate the presence of15

ecological chaos. Nevertheless, chaotic population dynamics have been convincingly found in a handful of well-controlled16

laboratory26–29 and field30–32 systems. Additionally, ecological chaos has recently been suggested to be an underappreciated17

and ubiquitous driver of abundance fluctuations across diverse populations33.18

Despite the strength and near-universality of such large population abundance fluctuations, they are not believed to strongly19

affect the evolutionary dynamics of populations. Evolution is primarily driven by the dynamics of the relative frequency of20

alleles; if the population is experiencing strong abundance fluctuations, the allele frequencies will be unaffected if all alleles have21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.02.23.581776doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581776
http://creativecommons.org/licenses/by/4.0/


L

S

Neutral S
barcoded lineages

A B

Renormalize

Absolute 
fluctuations are 
much larger than 
expected from 
bottlenecking

C

ED

Figure 1. Observation of large genotype frequency fluctuations. (A, B) Barcoded libraries of E. coli strains S and L were
propagated together in their native serial dilution environment (previously reported data34). In a Muller plot representation of
lineage sizes, we see that the total frequency of S relative to L shows large fluctuations. However, neutral barcoded lineages
within S show substantially smaller fluctuations relative to each other. (C) By quantifying the strength of fluctuations, we see
that total frequency fluctuations between S and L are several orders of magnitude larger than fluctuations between neutral
lineages and expected fluctuations from bottlenecking. (D, E) We propagated replicate cocultures of S and L strains together,
after splitting them from the same mother culture at day zero. Even after one day of propagation, there is already more variance
between replicates than expected from bottlenecking, and the variance accumulates over time. Note that the experiments in
panels A-C and in D-E were performed at different culture volumes (800mL versus 1mL), but under the same daily dilution
rate. All error bars represent 95% CIs.

2/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.02.23.581776doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581776
http://creativecommons.org/licenses/by/4.0/


synchronous abundance fluctuations. The primary source of stochasticity in allele frequency trajectories is generally thought22

to be genetic drift16, 35–37. Classical genetic drift is a form of demographic stochasticity that arises from stochastic offspring23

number fluctuations, as represented in models such as the Wright-Fisher model38. Genetic drift is expected to have a relatively24

small impact on abundance fluctuations, especially at large population sizes. However, the prevalence of giant abundance25

fluctuations in ecological dynamics warrants further investigation into their potential evolutionary implications. We hypothesize26

that these giant fluctuations could drive large frequency changes in subpopulations with asynchronous, stochastic abundance27

fluctuations. This hypothesis challenges traditional evolutionary models by suggesting that large abundance fluctuations can28

sometimes influence relative genotype frequencies.29

To investigate this, we turned to using genotypes isolated from the E. coli Long Term Evolution Experiment (LTEE).30

The LTEE is a well-known model system in experimental evolution, where several replicate E. coli populations have been31

propagated for over 70,000 generations, evolving in a simple daily dilution environment39. The daily dilution environment32

leads to repeated population bottlenecks, where only one out of every one hundred cells is propagated into the next day’s flask.33

This bottlenecking is expected to lead to result in genetic drift analogous to that described by the Wright-Fisher model. As a34

model system, we used two LTEE-derived strains that have coevolved with each other, referred to as S and L40–43. S and L35

diverged from each other early in the LTEE evolution, around 6.5k generations, where S emerged as an ecologically-distinct,36

but closely related genotype that partially invaded the initially L-dominated population44, 45.37

Ascensao et al. (2023)34 previously created random barcoded transposon knockout libraries of S and L, allowing them38

to track the frequency dynamics of many subclones of each strain within populations via amplicon sequencing. When they39

co-cultured the S and L libraries together, they saw that the total frequency of S relative to L fluctuated strongly (Figure 1A). In40

contrast, the fluctuations of neutrally-barcoded variants of S, relative to the total S population were significantly more muted41

(Figure 1B). The same observation holds true for L (Figure S1). Quantifying the strength of the observed frequency fluctuations,42

we see that the fluctuations between S and L are many orders of magnitude larger than fluctuations within-S (Figure 1C).43

Additionally, the within-S fluctuations are similar to the variance expected from bottlenecking, thought to be the primary source44

of genetic drift in serial transfer environments.45

We performed another coculture experiment with S and L, and measured relative frequencies with flow cytometry, a46

measurement technique orthogonal to amplicon sequencing. We propagated an S/L coculture, and then split the coculture47

into eight replicate cultures at day zero (Figure 1D). We continued to propagate the replicate cultures separately, but in the48

same environment. After a single growth cycle, there is already more variance between replicates than would be expected49

from classical genetic drift, and it accumulates over time (Figure 1E). Measurement noise cannot explain the magnitude of the50

variance, nor the fact that it tends to accumulate over time. We did not find these large fluctuations when we tested another,51

related pair of diverged genotypes in coculture, REL606 (the LTEE ancestor), and a strongly beneficial mutant, REL606 ∆pykF52

(Figure S2). Instead, we found that the variance accumulation was consistent with classical genetic drift. This indicates that53

not all non-neutral genotype pairs exhibit these giant fluctuations, and serves to provide additional evidence that there are no54

additional, unexplained sources of technical variance.55

What is the source of these large observed fluctuations, and how do they behave? We find that these giant frequency56

fluctuations act differently compared to classical genetic drift, leaving a distinctive footprint on the population dynamics.57

We constructed an effective model that demonstrates how large random abundance fluctuations can arise from correlated58

offspring numbers between individuals. Giant frequency fluctuations originate when the offspring numbers of individuals59

within genotypes are more correlated than those between genotypes. We thus refer to such fluctuations as “decoupling noise”.60

Our analysis further uncovers that these offspring number correlations are primarily driven by underlying chaotic dynamics.61

These dynamics induce a fluctuating selection-like effect, which significantly influences the population’s evolutionary trajectory.62

Our findings indicate that decoupling noise is likely common in various biological populations, fundamentally impacting63

evolutionary and ecological dynamics. This study not only provides a deeper understanding of the mechanisms behind64

population fluctuations, but also underscores the importance of updating traditional evolutionary theories to integrate these65

dynamic complexities.66

Results67

Empirical fluctuation scaling measurements68

We first aimed to determine if the large fluctuations we have observed behave in the same way as classical genetic drift.69

Under neutral drift, the variance in genotype frequency after one generation, var f , will depend on the mean frequency,70

var f = ⟨ f ⟩(1−⟨ f ⟩)/Ne
38. At low frequencies, f ≪ 1, the variance will scale linearly with mean, var f ≈ ⟨ f ⟩/Ne. Here, the71

brackets ⟨·⟩ represent the mean of a random variable. Deviations from the predicted scaling behavior would indicate fluctuations72

that do not arise from classical genetic drift.73

We sought to measure the mean-variance scaling relationships of population fluctuations in the S and L coculture system,74

measuring population abundances and genotype frequency via flow cytometry (Figure 2A). Briefly, we initially grow each75
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Figure 2. Empirical scaling of genotype frequency and abundance fluctuations. (A) After cocultering S and L together at
defined relative frequencies, we split the mother cultures into 16 replicate daughter cultures. We then grew the cultures for
another cycle, and measured the mean and variance across cocultures. We measured (B) variance of genotype frequency along
with (C) variance and covariance of absolute abundance, both as a function of mean S frequency. The points represent
experimental measurements, and the dashed lines are fitted lines with the indicated scaling. Error bars represent 95% CIs.

genotype in monoculture for several serial dilution cycles, before mixing the two genotypes together at a defined frequency.76

After one more growth cycle, we split the “mother culture” into sixteen replicate daughter cultures, all grown in the same77

environment. After another growth cycle, we take flow cytometry measurements of all daughter cultures, and then compute the78

mean and variance across the biological replicates derived from the same mother culture. We varied the initial frequency of the79

minor genotype, S, over about two orders of magnitude.80

Once we calculate the variance across replicate daughter cultures, we see that the variance of S frequency scales approxi-81

mately like var fS ∝ f 2
S (Figure 2B). We also measured the scaling behavior of the variance of the absolute abundance of S and82

L, var(NS) and var(NL) respectively, and the covariance between the two genotypes cov(NS,NL) (Figure 2C). Importantly, as83

with frequency, we measured the total abundance at the end of the growth cycle; we were not considering intra-cycle changes84

in abundance. The abundance of S scales like var(NS) ∝ f 2
S , L abundance stays approximately constant, and the covariance85

scales linearly, cov(NS,NL) ∝ fS. These observations also deviate from the prediction of classical genetic drift–the variance86

of S abundance should scale linearly, var(NS) ∝ fS, and the covariance should be zero or negative (if the population has a set87

carrying capacity), cov(NS,NL)≤ 0. Furthermore, the data indicate that it is not the case that the fluctuations predominantly88

arise from only one genotype–S and L abundance fluctuations are of about the same magnitude, with S potentially fluctuating89

slightly more by a factor of order one (Figure S4). Additionally, we measured total abundance fluctuations as a function of90

initial population sizes, by varying the volume of the culture while holding the dilution rate constant (Figure E8). We also91

found that var(N) ∝ N2, in both monoculture and coculture conditions. This indicates that the power law-scaling abundance92

fluctuations are present even in the absence of coculture conditions.93

Together, these data clearly indicate that the large frequency fluctuations we see cannot be explained by classical genetic94

drift. Now a new question arises: what type of process is generating the observed fluctuation scaling behaviors?95

Effective model of population fluctuations96

We would like to understand how genotype frequency and abundance fluctuations may arise from variation in individuals’97

offspring number (SI section S2.1). We first consider a simple population consisting of two genotypes, where all individuals are98

identical, except for a neutral (genetic) difference to distinguish between the types. There are initially NA and NB individuals of99

genotype A and B, respectively. Each individual i gives rise to n′i net offspring in the next generation, where var(n′i) = c0. We100

define the total population abundance as Ntot = NA +NB, and frequency of genotype A as f = NA/Ntot . We can then show that101

the variance of total population abundance and frequency in the next generation will be,102

var N′
µ = c0Nµ , (1)

var f ′ ≈ c0 f (1− f )/Ntot . (2)
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Figure 3. Model of population fluctuations. (A) We consider a population of individuals, subdivided into two genotypes. At
time zero, there are a specified number of individuals in each genotype. After some period of time, each individual has left
behind some random number of descendants, drawn from a distribution that may be correlated between individuals. (B, C) The
abundance of populations and relative frequencies of genotypes will generally differ across different replicate populations split
from the same mother culture, due to the random nature of the process. (D, E) Our model suggests specific scaling behaviors
for both the variance of a total number of individuals in each genotype and variance of the relative frequencies. Specifically,
there is a linearly scaling component caused by independent fluctuations (classical genetic drift), and a quadratically scaling
component caused by fluctuations correlated between individuals. The quadratically scaling fluctuations will appear in
abundance trajectories if there are correlated fluctuations, but they will only appear in frequency trajectories if intra-genotype
correlations are stronger than inter-genotype correlations.
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Thus, we see that we recover the variance relationships for fluctuations due to classical genetic drift, and we explicitly103

see that classical genetic drift arises from the sum of independent offspring number fluctuations. How can we now extend or104

generalize this model? One simple extension would be to allow individuals within a population to have correlated offspring105

numbers. This could arise due to a randomly fluctuating environment which induces transient opportunities (or perils) for106

reproduction, causing offspring numbers to be coordinated across individuals. We can introduce a new covariance parameter,107

cov(n′i,n
′
j) = c1, for different individuals, i ̸= j. The variance in population abundance and frequency becomes,108

var N′
µ = (c0 − c1)Nµ + c1N2

µ , (3)

var f ′ ≈ c0 f (1− f )/Ntot . (4)

The form of this total population abundance variance scaling has been previously noted46, 47. The abundance variance109

now scales linearly at low abundance, but shows quadratic growth at higher abundance. Power law mean-variance scaling110

of population abundance has been widely observed in ecology, where it is known as Taylor’s power law1–5. The variance in111

frequency stays the same as the case with uncorrelated offspring numbers; intuitively, this is because even though the abundance112

can strongly fluctuate due to correlated offspring numbers, the population sizes of the two genotypes will fluctuate in sync, so113

there will be no net effect on frequency fluctuations. However, this will only be the case if the offspring number fluctuations are114

correlated in precisely the same way with individuals of the same genotype and with individuals of a different genotype. Thus,115

we propose a yet more general model where the two genotypes are not necessarily identical, and the covariance parameters can116

depend on the genotypes considered (Figure 3). We consider the offspring number covariance between two individuals, where117

n′
µ,i represents in the number of net offspring from individual i, which belongs to genotype µ ,118

cov(n′µ,i,n
′
ν , j) =



c0A for i = j and µ = ν = A
c0B for i = j and µ = ν = B
c1A for i ̸= j and µ = ν = A
c1B for i ̸= j and µ = ν = B
cAB for i ̸= j and µ ̸= ν

(5)

The abundance variance does not change (equation 3), and the covariance between the abundance of the two genotypes119

along with the frequency variance becomes,120

cov(N′
A,N

′
B) = cABNANB = cABN2

tot fA(1− fA) , (6)

var( f ′A)≈
fA(1− fA)

Ntot
[(c0A − c1A)(1− fA)+(c0B − c1B) fA]+ (c1A + c1B −2cAB)︸ ︷︷ ︸

=δ

f 2
A(1− fA)

2 . (7)

The new composite parameter δ quantifies the degree of decoupling between the two genotypes. If the genotypes are121

identical such that c1A = c1B = cAB, then the quadratically-scaling fluctuations will vanish. These fluctuations will only appear122

if the offspring numbers of individuals within a genotype are more correlated with each other compared to individuals between123

genotypes. Similar forms for the frequency variance were found by Takahata et al. (1975)48 and Melbinger and Vergassola124

(2015)21; however, we consider the more general formulation where all five covariance parameters may differ from each other,125

and our model can be derived in a more generic way. Our model is readily extensible–we can expand our results to the more126

general case of a population consisting of m different genotypes (SI section S2.3).127

We note that if we consider the case where c0A − c1A = c0B − c1B, then we can simplify equation 7,

var( f ′A) =
fA(1− fA)

Ne
+δ f 2

A(1− fA)
2 , (8)

where the effective population size is defined as Ne = Ntot/(c0A − c1A). This form of the variance of genotype frequencies128

clearly shows that it is composed of two components. The first component arises from independent fluctuations of individuals,129

linearly scales with frequency, and corresponds to classical genetic drift. The second, quadratically scaling part arises when130

offspring number fluctuations between genotypes are decoupled to a degree, thus we refer to it as “decoupling noise”.131

Our model is an effective theory that purports to describe mean-variance scaling behaviors through covarying offspring132

numbers; such covariances may arise from a number of different underlying dynamical processes. Our model shows that133
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abundance fluctuations with a power-law exponent of two imply the existence of correlations between the reproductive success134

of individuals. Said another way, if a given dynamical system displays such abundance fluctuation scaling, the source of135

the fluctuations can be interpreted as offspring number correlations. Analogously, genotype frequency fluctuations with a136

power-law exponent of two imply that genotypes have decoupled offspring number correlations. As previously mentioned,137

genotype frequency fluctuations with a power-law exponent of two can arise from fluctuating environmental conditions, which138

has been referred to as “fluctuating selection”21, 48. However, fluctuating selection is not the only mechanism that can cause139

decoupling noise to appear. Various additional mechanisms2–5 can cause the correlated abundance fluctuations that scale like140

varN ∝ N2, including inherently chaotic dynamics23, 24 and spatial effects, such as aggregation and dispersal1, 22.141

The variance and covariance scaling behaviors in equations 3, 6, 7 are all consistent with the experimentally measured142

scaling relationships (Figure 2B-C). It appears that the measured range lies in the regime where the linearly-scaling component143

(classical genetic drift) is negligible compared to the effect of the correlated offspring number fluctuations. There is some144

evidence that the lowest data point in Figure 2B may fall into the cross-over between the linear and quadratic regimes,145

but it is not completely clear (Figure S6). The correlation between S and L abundance fluctuations at high frequencies146 (
ρAB = cAB/

√
c1Ac1B

)
is over 90%, demonstrating that a slight decoupling in correlated fluctuations between genotypes is147

sufficient to generate noticeable decoupling noise. Overall, the quantitative agreement between the experimental data and148

our model points to the presence of correlated offspring number distributions in the S/L system. However, the origin of such149

correlated offspring number fluctuations is still not clear.150

Within-cycle growth measurements reveal chaotic dynamics151

Populations derived from the E. coli LTEE are grown in a serial dilution, glucose minimal media environment, such that the152

populations are transferred at a 1:100 dilution into fresh media every twenty-four hours. This set-up creates a seasonally-varying153

environment, where the populations are switching strategies throughout a cycle as it proceeds from feast to famine and back154

again42, 49, 50. We reasoned that the within-cycle dynamics of replicate cultures could help to reveal the origin of decoupling155

noise. We find evidence that underlying chaotic dynamics are the source of the offspring number correlations between156

individuals.157

We measured the population dynamics of S and L coculture over the course of the twenty-four hour growth cycle. In a158

protocol similar to the one used in first Results section, after several initial monoculture growth cycles, we mixed S and L such159

that S initially occupies around 6% of the population. After one more growth cycle in coculture, we split the mother culture into160

multiple, independent replicate daughter cultures, and started to take population measurements over defined time increments161

via flow cytometry. We grew all of the daughter cultures together in a shaking 37◦C water bath, to minimize the effects of162

any possible environmental fluctuations. We measured the dynamics of the first eight hours and those of the last sixteen hours163

separately (on different days), because we found that the two periods had distinct experimental design requirements. The164

first eight hours (i.e. during exponential phase) is the period of the fastest dynamics, so we had to use both fewer biological165

replicates and a more dense sampling strategy. The last sixteen hours corresponds to stationary phase, where the dynamics are166

relatively slow.167

We first look at the within-cycle dynamics of S frequency, fS (Figure 4A). We see relatively complex, out of steady-state168

dynamics, especially in the first eight hours. As previously described51, the dynamics can be explained by differences in lag169

time, exponential growth, and stationary phase behavior. The frequency of S initially increases because it “wakes up” from lag170

phase earlier than L. However, L has a higher growth rate on glucose, so fS starts to decline once L wakes up. Then after a171

transition period, fS starts to increase again due to a stationary phase advantage and better growth on acetate42, 51, 52.172

We quantify the variance between replicates, and observe that there are periods of increased variance in approximately the173

first 5 hours, and the last 7 hours (Figure 4B). The increased variance between replicates in the first 5 hours may be caused by174

the fast dynamics of exponential phase, but its origin is not definitively clear. The fact that the variance drops close to zero by175

eight hours, instead of accumulating, suggests a non-biological origin to explain the initial variance. In contrast, after a period176

where the variance does not increase much, we see a steady accumulation of variance later in the timecourse. Specifically, the177

variance appears to be increasing exponentially at a constant rate, from around 7 hours to the end of the 24 hour cycle (Figure178

4C). This pattern is not consistent with technical sources of noise. The data fits an exponential trajectory better than linear or179

various other non-linear models (Figure S7). Biological replicates continually fluctuate and change their frequency rank order180

until the end of the time course (Figure S9)–their relative position is not “frozen in” early in the time course.181

Exponentially increasing variance between replicates that are initially close to each other is indicative of chaotic dynamics.182

Chaotic dynamics are classically indicated by extreme sensitivity to tiny perturbations (and a bounded phase space), such183

that small differences in the initial conditions exponentially increase over time. The observation of exponentially increasing184

variance is equivalent to the observation of pairwise exponential divergence (SI section S4.1).185

We used another standard method to detect chaotic dynamics and infer the largest Lyapunov exponent, based on changes in186

nearest-neighbor distance (NND)53. We inferred a significantly positive Lyapunov exponent (p = 0.006), which is consistent187
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A B

C D

Figure 4. Within-cycle chaotic dynamics of genotype frequencies. (A) After splitting cocultures of S and L into multiple
biological replicates, we measured genotype frequencies over the course of a twenty-four hour cycle (purple lines: 5 replicates;
blue/green lines: 23 replicates). Each line represents a biological replicate. (B) Quantifying the variance across replicates over
time, we see that the variance peaks both in the first 5 hours, and at the end of the cycle. However, the initial variance is not
maintained beyond the first 5 hours, suggesting that the later accumulation of variance is the primary contributor to the
decoupling noise. (C) We plotted the variance (after 7 hours) on a semilog scale, revealing that the variance appears to increase
exponentially over time. The black dashed line represents the exponential fit. Exponentially increasing variance between
initially close replicates is indicative of chaotic dynamics. (D) Lyapunov exponents calculated from the trajectories after 7
hours, inferred from the exponential fit from the variance (Var) and from the nearest-neighbor distance (NND) method. All
error bars represents 95% CIs.

8/27

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.02.23.581776doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581776
http://creativecommons.org/licenses/by/4.0/


with the Lyapunov exponent estimated from the exponentially increasing variance (Figure 4D). The inverse of the Lyapunov188

exponent (“Lyapunov time”) represents a characteristic timescale of the system, effectively representing how long a system189

will appear to be predictable. The Lyapunov time is approximately 5-10 hours, implying that trajectories would appear to190

be stochastic on longer timescales. Thus, the overnight timecourses were necessary to reveal the chaotic dynamics, because191

the system shows a relatively fast Lyapunov time of approximately 5-10 hours, so timepoints taken every 24 hours appear192

effectively stochastic.193

Together, these data suggest that decoupling noise originates from underlying chaotic dynamics. Chaotic dynamics cause194

individuals in a population to coordinate their birth/death rates (in an unpredictable way), implying the presence of effective195

offspring number correlations, and thus leading to mean-variance power law exponents of two. More generally, Ballantyne196

(2005)24 argued that Taylor’s power law with exponent of two will occur in any deterministic population dynamics model under197

two conditions: (i) the population size continues to fluctuate over time and (ii) the population growth rate remains constant.198

The Taylor’s power-law scaling is a simple consequence of the ability to rescale such deterministic systems by a constant factor199

k, which implies that the coefficient of variation remains constant,200

var(kN)

⟨kN⟩2 =
k2var(N)

k2⟨N⟩2 =
var(N)

⟨N⟩2 (9)

var(kN) ∝ ⟨kN⟩2 . (10)

Decoupling noise can then arise when the chaotic fluctuations between two populations are (to some degree) asynchronous.201

To further elucidate how chaotic dynamics can give rise to effective correlated offspring numbers, and decoupling noise, we202

simulated the chaotic dynamics in a simple two-genotype model (Figure E9). The model we analyze here is not intended to203

represent the underlying dynamics of the S/L system, but rather serves to demonstrate generic properties of chaotic dynamics.204

In alignment with our prior expectations, we see that Taylor’s power law holds, with varN ∝ N2. Additionally, decoupling205

noise appears across a range of different coupling strengths between the two genotypes, var f ∝ f 2.206

Extrinsic versus intrinsic decoupling noise207

Most prior experiments that we performed focused on dynamics across one 24 hour growth cycle. However, in both evolution208

experiments and natural populations, evolutionary and ecological dynamics occurs across many growth cycles or much longer209

time periods. In prior experiments that we performed over a single growth cycle, all replicates shared the same mother culture210

and experienced the same environment, controlling for the effects of (potentially subtle) environmental noise and between-day211

memory-like effects. However, in principle, both environmental noise and memory-like effects could impact the overall212

effective strength of decoupling noise (SI section S2.2). Both effects would induce offspring number correlations that would213

also cause correlations between replicate cultures grown in the same environment, and those that shared a mother culture. In an214

analogy to gene expression noise54, we refer to decoupling noise that is not correlated between replicate cultures as “intrinsic215

noise” (Figure 5A), which is the effect driven by inherently chaotic dynamics that we’ve been focusing on in previous sections.216

We use the term “extrinsic noise” for decoupling noise that is induced by shared environmental fluctuations (Figure 5B); this217

component has also been referred to as “fluctuating selection”21, 48. We thus sought to estimate the total strength of decoupling218

noise in our system by isolating the effects of shared mother cultures, intrinsic noise, and extrinsic noise.219

We conducted an experiment where we propagated S/L cocultures over several days in the same environment, serially220

splitting cultures into new replicates at three different timepoints (Figure 5D). We see that the frequency of S initially declines221

across replicate populations, owing to its frequency dependent fitness effect (Figure S10). The populations stabilize around222

their equilibrium frequency, but continue to fluctuate. We quantified the change in logit frequency from one day to the next223

for each replicate population (Figure 5E), i.e. the between-day “fitness effect”. We see that there are several days where224

the change in frequency is noticeably correlated across replicates; for example, from days 7 to 8, most replicates appear225

to increase in frequency, even though they were at a large range of different frequencies. This seems to indicate that there226

are significant extrinsic fitness fluctuations, putatively caused by subtle environmental noise. However, there are various227

possible contributions to fluctuations at each day, including measurement noise, extrinsic and intrinsic decoupling noise,228

frequency-dependent fitness, and any memory-like effects from sharing a mother culture. To pull apart the contributions of229

each effect, we built a Bayesian hierarchical model and fit it to the data (see Methods section "Extrinsic fluctuations and230

splitting cultures"). Briefly, we model the change in logit-transformed frequencies as Gaussian random variables, that can be231

affected by the aforementioned contributions. We see that intrinsic and extrinsic noise contribute roughly the same level of232

variance to frequency fluctuations (Figure 5F). In contrast, there is little detectable effect of sharing a mother culture (upper233

bound of the 99% credible interval is ∼ 10−15), indicating that any memory-like effects are overshadowed by inherent and234

environmental fluctuations. The large extrinsic fluctuations are perhaps surprising, given that the cultures were maintained in235

the same temperature and humidity-controlled incubator for the duration of the experiment. Similar sensitivity to putatively236
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Figure 5. Quantifying the relative strength of intrinsic noise, extrinsic noise, and the effect of sharing mother cultures.
(A-C) Different sources of decoupling noise leave different signatures in genotype frequency time courses, arising from
different sources of offspring number correlations. Schematics show two initial mother cultures that are each split into three
replicate daughter cultures at time zero. (A) Intrinsic decoupling noise causes frequency fluctuations that are uncorrelated
between replicates. (B) Extrinsic noise causes correlations in replicate cultures sharing the same environment. (C) Memory-like
effects would cause (temporary) correlations between cultures split from the same mother culture. (D) We performed an
experiment where we cocultured S and L together, then split the coculture into four replicate cultures on day 0. We continued to
propagate the cultures, and subsequently split each culture into more replicate cultures on days 3 and 7. (E) We computed the
change in logit frequency from one day to another (relative, extrinsic fitness effect) for each replicate population. Colors for
each population are consistent with panel D. The black squares represent the inferred extrinsic “fitness effect” for each day pair,
controlling for the effect of frequency-dependent selection, shared mothers, intrinsic noise, and measurement noise. (F) We
developed a model to partition variance of frequency noise, reporting the posterior median. All error bars represent 95% CIs.
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Figure 6. Extrinsic and intrinsic decoupling noise found in barcoded S. cerevisiae populations. Data reanalyzed from
Venkataram et al. (2016)56. (A) We computed the barcode frequency variance between three biological replicates, one growth
cycle after the culture was split into the replicates. We included all barcoded mutants in the analysis. Inset shows a different
representation of the same data, computing the variance of the log-frequencies. The grey points represent the variance of
individal barcoded mutants across the three biological replicates. The black line represents a rolling average. Colored dashed
lines represent the indicated scaling. (B) Estimate of the mean squared displacement (MSD) of the log-frequencies (restricted
to barcodes with high mean frequency). (C) Change in log-frequency from one day to another (relative, extrinsic fitness effect)
for each barcode in each batch (again, restricted to high frequency barcodes). The gray line represents the mean displacement
for each replicate at each timepoint. (D) Estimated contribution of both intrinsic and extrinsic decoupling noise to frequency
fluctuations. All error bars represent 95% CIs.

subtle environmental fluctuations has been observed in other experiments55. This sensitivity is likely caused by the underlying237

chaotic dynamics of the process, which can exponentially amplify minor environmental differences.238

Both intrinsic and extrinsic decoupling noise appears to be present in other, unrelated experimental systems. Venkataram et239

al. (2016)56 used a barcoding system to track frequency trajectories of many adaptive variants of S. cerevisiae yeast. They also240

find large frequency fluctuations when adaptive variants are at high frequencies. Venkataram et al. cultured populations together,241

and then split the cultures into three biological replicates at time point 1. We exclude batch 2 from our analysis because it242

only had two replicate cultures per time point, compared to three replicate cultures for batches 1, 3, and 4. We computed the243

frequency variance between biological replicates after one growth cycle apart (Figure 6A), leveraging the presence of many244

adaptive barcoded clones to average across the clones to obtain a more precise mean-variance relationship. We pooled all245

barcoded mutants together in this analysis, and thus we are averaging over the effects across genotypes. We see that the there is246

an uptick in the variance at high mean frequencies. Specifically, variance in frequency between biological replicates scales247

approximately like ∼ f at low frequencies and ∼ f 2 at high frequencies, again consistent with equation 7. An unconstrained248

power-law fit on the raw data yields a power-law exponent of 1.14±0.05 at low frequencies, and 2.0±0.08 at high frequencies.249

We also computed the relationship between the mean variance and the variance of log frequencies (Figure 6A inset), which250

is also consistent with our model, as we would expect a constant mean-variance relationship at high frequencies (the log251

transformation acts as a variance-stabilizing transform). To investigate if the putative decoupling noise accumulates over252

time, we estimated the mean-squared displacement (MSD) of the log-frequency trajectories (of barcodes with high mean253

frequency), correcting for measurement noise and fitness effects (Figure 6B). If decoupling noise is indeed causing the observed254

quadratic variance scaling at high mean frequencies, the MSD should increase at an approximately linear rate, with the slope255
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A B

Figure 7. Theoretical evolutionary implications of decoupling noise. (A) The fixation probability of a beneficial mutant, as
a function of its (effective) fitness effect, se. Here we focus on the case that c1A = c1B, so that se = s. The star markers show the
location of s∗e (equation 12), the approximate transition point between the two regimes of p f ix. The x markers represent the
asymptotic fixation probability at low S (equation 13). (B) The site frequency spectrum as a function of the mutant frequency
(logit x-axis scale). In both plots, the blue-green solid lines represent full analytical solutions for dynamics with decoupling
noise, across different values of δ . The round markers show simulation results; error bars represents 95% CIs. The black dotted
lines represent the case where there are no decoupling noise, but there is still (constant) natural selection. The red dashed lines
represents the case where there is neither decoupling noise nor natural selection. Across both plots, c1A = c1B, ρAB = 0.5,
Ne = 103. In (A), f0 = 10−3. In (B), the solid lines show the case where s = 0 but δ ̸= 0 and the black dotted line shows the
case where s = 0.01 and δ = 0.

corresponding to δI . Consistently with our prediction, we see that the MSD increases with increasing time increments across256

all batches. The strength of intrinsic decoupling noise is approximately the same across the two major classes of adaptive257

mutants, adaptive haploids and diploids (Figure E10); virtually all high-frequency barcodes are adaptive mutants. If two clones258

were identical, we would expect that decoupling fluctuations would affect them in the same way, and thus their frequency259

displacements would be perfectly correlated. Indeed, we see that if two clones are of the same mutant class, their fluctuations260

are more correlated on average than between clones of different mutant classes (Figure E11).261

Similarly to the previously presented data (Figure 5E), we investigated the effect of extrinsic noise by plotting the log262

displacement of high-frequency barcodes over time (Figures 6C). We see that the mean displacement of barcodes is often263

correlated at time points, in a way that is consistent within batches, but not between batches. This is potentially a signal of264

extrinsic decoupling noise. To quantify the relative strength of intrinsic versus extrinsic decoupling noise, we employ a similar265

Bayesian hierarchical model to the one previously presented (Figures 6D). We again infer relatively large strengths of both266

intrinsic and extrinsic decoupling noise. The inferred strength of extrinsic decoupling noise has wide, uncertain posterior across267

all batches, which is due to the fact that there are a small number of timepoints per batch. However, the error bars provide a268

lower bound on plausible values of δE , which is of the same magnitude as the inferred strength of intrinsic noise. Together,269

these data provide evidence for the presence of both intrinsic and extrinsic decoupling noise in an experimental barcoded yeast270

system.271

The effect of extrinsic fluctuations can easily be incorporated into our model (SI section S2.2). Specifically, if the272

environment has a negligible autocorrelation time, the total decoupling parameter is simply the sum of the intrinsic and extrinsic273

components, δ = δI +δE . Significant environmental autocorrelation times could lead to more complex dynamics57. In principle,274

the extrinsic component can be altered easily by changing the rate/amplitude of environment fluctuations, while the intrinsic275

component depends on the inherent (chaotic) dynamics of the system.276

Evolutionary implications of decoupling noise277

As fluctuations arising from classical genetic drift have strong effects on evolutionary outcomes, it is reasonable to expect that278

the presence of decoupling noise may also have evolutionary implications. To study the implications of decoupling noise, we279

consider our model in the diffusion limit, under constant selection (equation S20). Previous studies21, 48, 58, 59 have investigated280

similar stochastic processes, but we consider the more general form where all five covariance parameters may differ from each281

other. We obtain analytical results for the fixation probability and the site frequency spectrum, and compare those results to282
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simulations.283

We consider a mutant with fitness effect s and decoupling parameter δ = c1A +c1B −2cAB, defined in terms of the offspring
number covariances. In this section, we focus on the case where the strength of genetic drift is the same between the two
genotypes,

Ne =
Ntot

c0A − c1A
=

Ntot

c0B − c1B
, (11)

so that we can use one parameter, Ne, to encapsulate the strength of genetic drift. However, we can generalize beyond this284

case (SI section S3).285

Fixation probability286

We examine the fixation probability of a mutant in a two-genotype system (Figure 7A). We derive a general closed-form287

expression for the fixation probability as a function of the initial mutant frequency f0 (SI section S3.1). Notably, the fitness288

effect appears only within a new compound parameter, which we term the effective fitness effect, se = s+(c1B −c1A)/2 (Figure289

S14).290

In the limit of weak decoupling noise, δ ≪ 1/Ne, we find that p f ix reduces to the classical fixation probability of a mutant291

under constant selection38, as expected (Figure 7A; black dotted line).292

We then examine the limit where (i) decoupling noise is much stronger than genetic drift, δ ≫ 1/Ne, and (ii) when the
initial frequency is small, f0 ≪ (seNe +δNe/2)−1 (equation S37). In this limit, we see that the fixation probability can be
approximately divided into two major regimes (Figure 7A; colored lines). For small se, the fixation probability approaches a
constant value. For large se, decoupling noise becomes negligible compared to selection, and the fixation probability approaches
the classical expression for fixation probability. The transition point between the two regimes is approximately,

s∗e ≈
δ

2log(δNe)
. (12)

This transition point s∗e acts as a "decoupling-drift barrier," below which selection cannot efficiently distinguish between
genotypes with different fitness effects. This threshold can significantly exceed the classical "drift barrier" of 1/Ne. In the
strong decoupling/small initial frequency limit, we can express the fixation probability using an approximate piecewise function:

p f ix( f0)≈


f0 Ne s∗e for se ≪ s∗e

f0
2seNe

1− e−2seNe
for se ≫ s∗e .

(13)

We compared our exact analytical expression for p f ix with simulations and the piecewise approximation (Figure 7A). The293

transition point s∗e and piecewise approximation for p f ix show good agreement with both the exact expression and simulations.294

However, simulation results begin to diverge from the analytical expression at higher δ , as the first-order, small frequency295

deviation assumption in the Langevin equation becomes less accurate. Additionally, the p f ix approximation for se ≪ s∗e begins296

to deviate from simulations and analytics at higher δ due to the breakdown of the small f0 approximation.297

Counterintuitively, we find that p f ix( f0)> f0 for neutral or nearly-neutral mutants (i.e., mutants with s → 0). While one298

might expect p f ix( f0) = f0 for neutral mutants due to symmetry, this is not the case when δ ̸= 0. Under these conditions, the299

mutant and wildtype are not exchangeable, as individuals from different genotypes covary differently. In fact, decoupling300

noise induces an effective frequency-dependent fitness effect (Figure S15; equations S12, S20), a phenomenon observed in301

similar models21, 48. This effective frequency-dependent fitness effect is symmetric when c1A = c1B. Consequently, a mutant302

experiencing decoupling noise but otherwise neutral with respect to the wildtype will have a disadvantage as it approaches303

fixation, but an effective advantage when rare–the crucial period for new mutants when they are most at risk for extinction.304

Thus, the increase in p f ix above f0 for neutral mutants directly results from this effective selective advantage for rare mutants.305

Site frequency spectrum306

The site frequency spectrum (SFS) is a commonly used summary of the genetic diversity within a population. It describes307

the expected density of derived alleles at a given frequency; specifically pSFS( f )d f is the number of derived alleles in the308

frequency range [ f −d f/2, f +d f/2]60. The population mutation rate is θ . Different dynamical processes can leave different309

characteristic signatures on the site frequency spectrum, so empirical site frequency spectra are often measured to infer aspects310

of the underlying evolutionary dynamics.311

We calculate the SFS for alleles affected by decoupling noise by leveraging previously described approaches61, 62. We find312

a general closed form solution for the SFS with constant selection and decoupling noise (SI section S3.2). We see that at low313
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frequencies, the SFS both with and without decoupling noise decays as ∼ 1/ f , which is also the expectation for purely neutral314

alleles38 (Figure 7B). Simulations generally agree well with the analytics, but we see again that they start to deviate at higher δ .315

A major feature of the SFS with decoupling noise lies in an uptick at high frequencies, which appears even in the absence
of genuine (constant) selection (Figure 7B). Specifically, under strong decoupling noise δ ≫ 1/Ne, and weak selection, we
observe that the SFS approaches a constant when (1− f )≪ δNe,

pSFS ≈
δNe

2log(δNe)
θ . (14)

This is reminiscent of the classic SFS in the case of weak decoupling noise and strong selection, where the SFS also
approaches a constant in the limit that (1− f )≪ (Nese)

−1,

pSFS ≈ 2sNeθ . (15)

In the case of weak decoupling noise and strong selection, the SFS in the intermediate-high frequency regime (Nese)
−1 ≪

(1− f )≪ 1 scales like 1/(1− f ),

pSFS ≈
θ

(1− f )(1− e−2Nes)
(16)

The SFS in the limit of strong decoupling noise and weak selection has a slightly different scaling behavior in the analogous
regime, (δNe)

−1 ≪ (1− f )≪ 1, that includes a factor of log(1− f )/(1− f ),

pSFS ≈ θ
1

2(1− f )

Å
log(1− f )
log(δNe)

+1
ã
. (17)

Decoupling noise can also substantially reduce diversity at intermediate frequencies. When δ ≪ 1/Ne and Nes ≫ 1, the
minimum of the SFS is simply 4θ , at f = 0.5. In contrast, when δ ≫ 1/Ne the SFS at the same location is always lower,

pSFS(0.5)≈
4θ

1+(δNe)−2se/δ
< 4θ . (18)

The value pSFS(0.5) ranges continuously from 4θ to 2θ as δ goes from zero to infinity. Overall, we showed how decoupling316

noise can decrease diversity at intermediate frequencies, while increasing diversity at high frequencies.317

Discussion318

In this study, we show how an ecological mechanism can induce anomalous frequency fluctuations that are much larger than319

what can be attributed to classical genetic drift or measurement error. While classical genetic drift arises from independent320

offspring number fluctuations, our analysis suggests that these giant fluctuations arise when the offspring numbers of individuals321

are more correlated within genotypes compared to between genotypes. We constructed a simple and generic effective model322

of genotype frequency fluctuations, revealing that their magnitude is the sum of linearly-scaling classical genetic drift, and323

quadratically-scaling decoupling noise. By measuring the scaling relationships of the population fluctuations, we showed that324

the observed large fluctuations were indeed caused by decoupling noise.325

Population abundance fluctuations are a well known, near-universal feature of populations across the tree of life, many of326

which follow Taylor’s power law1–5. Our effective model provides a general description of abundance fluctuations with few327

assumptions, valid for a range of underlying mechanistic processes. Fluctuating selection is one possible mechanism to explain328

such abundance fluctuations21, 48, but importantly, other mechanisms such as chaotic dynamics23, 24 and spatial effects1, 22 can329

also cause such fluctuations. Importantly, our model predicts that any population composed of two or more genotypes that330

have sufficiently decorrelated offspring number fluctuations will experience decoupling noise. Many populations experience331

abundance fluctuations with a Taylor’s law exponent near two19, 20, including unrelated experimental microbial populations7,332

and thus have correlated offspring number fluctuations. Decoupling frequency fluctuations are thus likely common, especially333

if offspring number correlations have a genetic basis and are mutable.334

In our system, the correlated offspring numbers, and decoupling noise, appear to be caused by underlying chaotic dynamics.335

The chaotic dynamics produce a fluctuating selection-like effect, leading to mean-variance power law exponents of two24.336

Chaotic dynamics are known to be possible even in simple, single-genotype populations25, 63. There are several plausible337

mechanisms that could generate chaotic population dynamics in our system, including overcompensation and nonlinear338

feedback loops between secreted metabolites and growth rates. The fluctuations appear even under the most tightly controlled339
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environment we could create–among replicates from the same mother culture in the same shaking water bath. Thus, unlike340

fluctuating selection caused by a varying environment, we believe that this decoupling noise is inescapable, and an intrinsic341

aspect of the system. The underlying source of the decoupling noise in the unrelated barcoded S. cerevisiae populations that we342

reanalyzed55, 56, 64 remains unclear. As previously mentioned, a number of mechanisms are known to cause giant abundance343

fluctuations2–5, 21, 23, 24, 48. However, the recently reported extreme sensitivity of barcoded yeast populations to subtle variations344

in the environment55 is consistent with chaotic dynamics. Chaotic abundance dynamics have been suggested to be common345

among wild populations33, and have been demonstrated in a number of carefully controlled laboratory26–29 and field30–32
346

systems. Together, this opens the possibility that chaotic dynamics are also common in experimental microbial populations, and347

could play an important role in evolutionary dynamics by influencing genotype frequency dynamics across different systems.348

The results of our study have implications for the inference of fitness effects in diverse biological populations. Among349

other possible mechanisms, subtle environmental fluctuations can be amplified by the chaotic dynamics, leading to significant350

extrinsic decoupling noise, which can cause batch correlations among replicates grown in the same conditions. These batch351

correlations may be mistaken for a genuine fitness effect, especially if the autocorrelation time of the environment is on a352

similar timescale as the evolution experiment. Thus, special care must be taken when designing evolution experiments to353

measure genotype fitness effects. For example, experimenters could perform biological replicates separately on different sets354

of days, or continuously measure environmental variables (e.g. temperature, humidity) over the time course to quantify the355

effect of environmental fluctuations. The accuracy of fitness inference procedures may be improved by explicitly modeling the356

effects of decoupling noise, along with classical genetic drift and measurement noise. Fitness inference methods that leverage357

temporal correlations between alleles65 must be handled with care, lest chaotic or spatial effects be confused with genuine358

(classical) selection.359

Decoupling noise could cause a number of emergent effects on evolutionary dynamics. For example, we showed that the360

fixation probability of mutants can be drastically shifted by the presence of decoupling noise; thus, the fate of a mutant will361

not only depend on its fitness effect, but also on its decoupling parameters. The distribution of mutant fitness effects (DFE) is362

currently thought to largely shape the evolutionary dynamics of adapting populations66, 67. But the DFE may (partially) lose its363

predictive power in the face of decoupling noise; we may need to consider a more general joint distribution, between fitness364

effects, drift effects, and decoupling parameters, especially if the joint distribution has non-trivial structure. For example, if the365

fitness effects of mutants do not correlate with their decoupling effects, or if decoupling effects are same between mutants, then366

which mutants become successful would be well predicted by considering the DFE alone. However, if both fitness effects and367

decoupling effects can vary between mutants, the group of mutants that reach high frequencies and eventually become fixed368

may differ from what would be anticipated based solely on the DFE. More broadly, the concept of a fitness landscape may need369

to be updated to a more general fitness-decoupling-drift landscape; evolutionary trajectories through such a landscape will370

likely differ compared to the case where the decoupling and drift effects are held constant. Significant effort has been devoted to371

measuring and characterizing the fitness effects of genotypes across systems, i.e. mean offspring numbers. But comparatively372

little effort has been placed in measuring the drift and decoupling effects of genotypes, i.e. offspring number variance and373

covariances, even though they can strongly shape evolutionary fates. We thus advocate for an effort to more routinely measure374

drift and decoupling effects alongside fitness effects.375

In our theoretical analysis, we focused on the strong selection-weak mutation regime, where beneficial mutations rise and fix376

before another establishes. However, it is still unclear how decoupling noise would change the dynamics under other regimes,377

for example in the clonal interference/multiple mutations regime68. The evolutionary dynamics in the clonal interference regime378

may quickly become complicated, as one would have to account for the full offspring number covariance matrix between379

all genotypes present (SI section S2.3), rather than just a single decoupling parameter. Simplifying the covariance matrix380

by applying natural symmetries or random matrices may ease analysis, and could reveal complex behaviors. Additionally,381

broad-tail offspring number distributions can emerge out of a diverse array of growth processes15, 69, 70, but their effects on382

dynamics may change if such distributions are correlated across individuals. Both extensions are likely fruitful avenues for383

future work.384

Overall, we presented experimental measurements for the scaling behavior of population fluctuations, and showed that385

we could explain them through a generic and extendable theoretical framework. We derived new theoretical results, showing386

how decoupling noise can impact evolutionary dynamics. We found that decoupling noise can arise quite generally, through a387

number of distinct mechanisms, so we believe that they may be common across diverse biological populations.388

Methods389

Growth conditions, media, and strains390

All of the experiments presented here were performed in Davis Minimal Media (DM) base [5.36 g/L potassium phosphate391

(dibasic), 2g/L potassium phosphate (monobasic), 1g/L ammonium sulfate, 0.5g/L sodium citrate, 0.01% Magnesium sulfate,392

0.0002% Thiamine HCl]. The media used in the LTEE and all experiments presented here is DM25, that is DM supplement393
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with 25mg/L glucose. For coculture experiments, we first inoculated the desired strain into 1mL LB + 0.2% glucose + 20mM394

pyruvate. After overnight growth, we washed the culture 3 times in DM0 (DM without a carbon source added) by centrifuging395

it at 2500xg for 3 minutes, aspirating the supernatant, and resuspending in DM0. We transferred the washed culture 1:1000 into396

1mL DM25 in a glass tube. Generally, we grew 1mL cultures in a glass 96 well plate (Thomas Scientific 6977B05). We then397

grew the culture for 24 hours at 37◦C in a shaking incubator. The next day, we transferred the cultures 1:100 again into 1mL398

DM25. After another 24 hours of growth under the same conditions, we would mix selected cultures at desired frequencies,399

then transfer the mixture 1:100 to DM25. After another 24 hours of growth under the same conditions, we proceed with the400

experiment and start collecting measurements.401

We used strains with fluorescent proteins inserted at the attT n7 locus, integrated via a miniTn7 transposon system, as402

previously reported51. The 6.5k S strain was tagged with eBFP2, the 6.5k L strain was tagged with sYFP2, REL606 was tagged403

with sYFP2, and the REL606 ∆pykF mutant71 was tagged with mScarlet-I.404

Flow cytometry405

For all population measurements taken with flow cytometry, we used the ThermoFisher Attune Flow Cytometer (2017 model)406

at the UC Berkeley QB3 Cell and Tissue Analysis Facility (CTAF). For every measurement, we loaded the samples into a round407

bottom 96 well plate, for use with the autosampler. We set the flow cytometer to perform one washing and mixing cycle before408

each measurement, and ran 50 µL of bleach through the autosampler in between each measurement to ensure that there was no409

cross-contamination between wells. We used the “VL1” channel to detect eBFP2 fluorescence, which uses a 405nm laser and a410

440/50nm bandpass emission filter. We used the “BL1” channel to detect sYFP2 fluorescence, which uses a 488nm laser and a411

530/30nm bandpass emission filter. We used the “YL2” channel to detect mScarlet-I fluorescence, which uses a 561nm laser412

and a 620/15nm bandpass emission filter. We used a previously described and validated analysis framework51 to extract cell413

counts and strain frequencies from raw flow cytometry data. We used a previously described gating strategy, where we used414

threshold gates to separate clearly fluorescent particles from debris/noise (Figure S2 from Ascensao et al. (2024)51).415

Multi-day timecourses416

We analyzed barcode sequencing data previously reported in Ascensao et al. (2023)34, focusing on experiment "Eco Eq 1".417

We used the Ne estimate reported in Ascensao et al. (2023), which was obtained by decomposing within-ecotype neutral418

barcode frequency fluctuations into a component that accumulates over time (demographic fluctuations), and a component that419

is uncorrelated over time (measurement noise). We used previously reported data on colony forming units (CFUs) to estimate420

the bottleneck size, Nb, by taking the average of barcoded (kanamycin resistant) CFUs over the timecourse. We obtained an421

estimate of the frequency variance between-ecotypes by fitting a linear model to the time course via ordinary least squares, and422

computing the variance around the line. We obtain quantitatively consistent results by leveraging the two biological replicates423

of the experiment, which were split at day 0, by calculating the variance between frequencies at day 1; this estimation method424

results in much wider confidence intervals, but a lower bound that is still several orders of magnitude larger than expected425

variance from bottlenecking and classical genetic drift. Similarly large between-ecotype fluctuations were found for all other426

coculture experiments presented in Ascensao et al. (2023).427

We propagated cocultures of S and L (Figure 1D-E), along with cocultures of REL606 and the REL606 ∆pykF mutant428

(Figure S2), where we started the cocultures as described above. We split the cocultures into eight replicates at day 0, where all429

replicates where grown in the same 37◦C incubator, at the same time. We took flow cytometry measurements of the populations430

at the end of each 24 hour cycle. We computed a robust estimate of the variance (to decrease the influence of outliers) through431

the median absolute deviation, var f ≈ 2.1981 · (medi | fi −medi fi|)2. Confidence intervals were determined by standard432

bootstrapping. To compute the “genetic drift prediction” of how frequency variance should change over time, we used Ne = 105,433

which is the approximate (conservative) bottleneck population size for both cocultures. We computed the approximate expected434

variance due to drift as var f1 = f0(1− f0)/Ne for the first time point, and then var ft+1 = var ft + ⟨ ft⟩(1−⟨ ft⟩)/Ne for all435

subsequent time points.436

To obtain estimates of the scaling behavior of variance quantities with respect to the frequency of the minor genotype,437

S (Figure 2), we first set up S/L cocultures as described above, by mixing the cultures at different frequencies over about438

two orders of magnitude with S in the minority. We split each coculture into 16 replicate cultures, all grown under the same439

conditions. After one 24 hour growth cycle, we took three, independent flow cytometry measurements of each culture, which440

we treated as technical replicates for each culture. We utilized technical replicates for each culture primarily to decrease the441

effective amount of measurement noise for abundance–abundance measurements are noisier in our system than frequency442

measurements51. We took the average across technical replicates as the final frequency and abundance estimates for each443

biological replicate culture. We then computed variance across biological replicates with the standard estimator. Quantitatively444

and qualitatively similar results are obtained by using the robust estimator for the variance. We compared the variance to the445

mean frequency, instead of the frequency at the beginning of the cycle, because the within-cycle frequency dynamics show that446

the mean frequency is a better measure of the frequency right before variance starts to accumulate (Figure 4A). We inferred the447
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power-law exponents by performing ordinary least squares regression on the log-transformed variance/covariance quantity448

against the log-transformed mean S frequency; we determined confidence intervals via standard bootstrapping (Figure S3).449

We measured the relationship between initial abundance and variance of abundance (Figure E8) by growing cultures as450

previously described, mixing S and L at around fS ≈ 0.05 (the approximate equilibrium frequency) for the coculture condition,451

as well as continuing to propagate monocultures of S and L. We split the cultures into 16 replicate cultures per volume condition452

(using the same 1:100 daily dilution rate for all conditions). We used 0.1, 1, and 10mL culture volumes, where used the453

glass 96 well plates for the first two conditions, and 50mL glass erlenmeyer flasks for the 10mL condition. After the 24 hour454

growth cycle, we plated each replicate culture on LB plates, at a 10−5mL−1 dilution rate. We additionally took flow cytometry455

measurements for each replicate in the coculture condition, to more accurately measure genotype frequency. Confidence456

intervals were computed by standard bootstrapping. There are no statistically significant differences in variance scaling when457

comparing the monoculture and coculture conditions, or between S amd L.458

Within-cycle timecourses459

After the initial growth cycles of fluorescently tagged S and L as previously described, we mixed the strains together such that460

the relative frequency of S was around 6%. We grew the coculture for one more cycle in DM25, then took a flow cytometry461

measurement at the end of the 24 hour cycle, which we took as time 0. We then immediately inoculated new replicate cultures462

from the overnight mother culture by diluting the culture 1:100 into DM25 (e.g. 300 µL of culture + 30mL of DM25), vortexing463

the mixture well, and then splitting the resulting mixture into 1mL cultures in individual wells of a glass 96 well plate. We used464

5 biological replicates for the 8 hour time-course and 23 replicates for the 24 hour time-course. We secured the 96 well plate in465

a 37◦C water bath, shaking at 180rpm. The wells of the glass 96 well plate are separated such that water can pass in between466

the wells. We briefly removed the plate at designated time intervals (about every 30 minutes and 2 hours for the 8 and 24 hour467

time course, respectively) to subsample approximately 60 µL of culture for flow cytometry measurements. Subsamples were468

discarded after measurement. Exact times of plate sampling were documented. We subsampled the cultures from the 24 hour469

time course in two batches (one of 11, one of 12), where we subsampled the second batch immediately after the flow cytometry470

measurement of the first batch was finished. We utilized the batch structure to minimize the amount of time the samples have to471

wait outside of the water bath to be measured by the flow cytometer.472

Following data processing, we computed the variance between biological replicates at the same time points. For the 24 hour473

time-course, we first computed the variance among all samples in the same batch for each time point, then averaged the variance474

between the two batches at the same time point, because the batches were taken at slightly different actual times. The confidence475

intervals for variance measurements were computed with standard asymptotic formulas. We fit various curves (Figure S7A) to476

the variance trajectory after 7 hours by first log-transforming the variances (as an approximate variance-stabilizing transform),477

and then performing least squares regression. Denoting vi as the variance and ti as the time, we fit a simple exponential curve,478

logvi = loga+bti + εi, a linear curve, logvi = log(a+bti)+ εi, a generalized power-law curve, logvi = log(c+atb
i )+ εi, and479

a quadratic curve, logvi = log(c+ati +bt2
i )+ εi. Confidence intervals for the fits were obtained by resampling trajectories of480

biological replicates with replacement (standard bootstrapping), computing the variance between replicates in the same manner481

as previously described, and performing the appropriate regression again.482

We evaluated the fits of all regressions by computing their Akaike Information Criterion (AIC),483

AIC = n log

Ç
1
n ∑

i
(v̂i − vi)

2

å
+2p . (19)

Where v̂i is the variance predicted from the regression model, n is the number of time points, and p is the number of484

parameters fit in the model. We observed that the AIC of the exponential fit was lower than all others (Figure S7B). Thus, we485

sought to determine if this difference was significant. To this end, we computed paired one-sided p-values similarly to how we486

computed confidence intervals, i.e. with standard bootstapping, re-performing the regression, and calculating the AIC.487

We calculated Lyapunov exponents (λ ) from the frequency trajectories after seven hours in two ways. First, we implemented
and appropriately modified the method proposed by Rosenstein et al. (1993)53, based on nearest-neighbor distance (NND)
trajectories. The method relies on (1) appropriately embedding the data, (2) identifying the nearest neighbor j at the initial
timepoint of each trajectory j (calculated using euclidean distance), (3) computing the euclidean distance between initially
nearest neighbors over time, di, j(t), and (4) fitting an exponential to all computed pairwise distances via least squares regression,

logdi, j(t) = λ t +b+ εi, j(t) . (20)

To embed the data, we first needed to choose the appropriate hyperparameters for the embeddding dimension and lag time,488

which we did via shuffle splitting cross-validation. Specifically, for each embedding, we shuffled the data with 1000 replicates,489

then used 30 of the distance points to fit the model shown in equation 20 and obtain and estimate for λ and b. Using the fitted490
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parameters, we computed the mean squared error (MSE) for all remaining out-of-sample points, and averaged the MSE across491

all shuffled replicates. The one-dimensional case had the lowest out-of-sample MSE, so we proceeded with the one-dimensional492

Lyapunov exponent estimate (Figure S8B). The Lyapunov exponents obtained for the other hyperparameter sets were very493

similar to the one-dimensional case (Figure S8A), showcasing the robustness of the method.494

Recent work has suggested the use of Lyapunov exponent inference methods based on dynamics reconstruction and jacobian495

estimation33. However, our timecourse is not long enough to accurately reconstruct dynamics in the necessary manner, and496

would not allow for effective jacobian estimation. Additionally, measurement noise is small in our experimental set-up, and we497

can leverage the numerous biological replicates starting from (nearly) the same initial conditions to directly look at divergence498

of trajectories. Thus, we do not believe the use of a jacobian-based inference method is necessary or appropriate for this499

experiment.500

The exponentially increasing variance between biological replicates can also be used to extract a Lyapunov exponent501

(SI section S4.1). Specifically, var f ∝ e2λ t , so we took the Lyapunov exponent as half of the fitted exponent. This is valid502

if the system is well-described as one-dimensional (although this assumption could be relaxed in principle); our previous503

hyperparameter analysis revealed that this was indeed the case. In both methods, we obtained confidence intervals by standard504

bootstrapping.505

Extrinsic fluctuations and splitting cultures506

We started a coculture of S and L with the same protocol as previously described. At day 0, we split the culture into 4 replicate507

cultures by diluting the culture 1:100 into DM25, vortexing the mixture well, and then splitting the resulting mixture into 1mL508

cultures in individual wells of a glass 96 well plate. We split replicate cultures at days 3 and 7, via the same procedure, into 3509

and 2 new subreplicates for each culture respectively. We took flow cytometry measurements at the end of each growth cycle510

for twelve days.511

We sought to model the effects of measurement noise, frequency-dependent fitness effects, intrinsic and extrinsic decoupling512

noise, and memory-like effects from sharing mother cultures (from splitting cultures). We used a Bayesian hierarchical modeling513

approach to model the data, as it allowed us to flexibly set up the model, and obtain full posterior estimates. We focused514

on modeling the logit frequency displacements for each culture, because a logit transform serves as a variance-stabilizing515

transform for decoupling noise and fitness effects. For example, in the simplest case, considering just fitness effects and intrinsic516

decoupling noise, the distribution of frequencies at time t is,517

ft+1| ft ∼ N ( ft + s( ft) ft(1− ft),δI f 2
t (1− ft)2) . (21)

After a logit transformation, the frequency displacement is,518

∆logit ft = logit ft+1 − logit ft ∼ N(s( ft),δI) . (22)

We model the effect of environmental fluctuations by considering an environmental effect that is drawn from a centered519

normal distribution at each time point,520

Et ∼ N (0,δE) . (23)

Similarly, we model the effect of shared mothers as another centered normal distribution,521

Mg,t ∼ N (0,vM) . (24)

The g subscript indexes a group that all arise the same mother culture at time t, such that all daughter cultures will share the522

same Mg,t . We focus on modeling the effect of sharing a mother culture immediately after splitting cultures on days 3 and 7; for523

all other days, we set Mg,t = 0. Both the effect of shared mothers and environmental fluctuations feed into the mean of the524

frequency displacement for each timepoint. We model the frequency dependent fitness as a linear function, α +β ft,g,i, which525

appears to capture this dependence well in the frequency regime our data lies in (Figure S10). The final hierarchical model that526

we fit to the data reads as,527

∆logit ft,g,i ∼ N (α +β ft,g,i +Et +Mt,g,δI +µt+1,t,i) . (25)
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We account for measurement noise by specifying µt+1,t,i; we previously found that frequency measurements have errors528

well approximated by a binomial distribution in our flow cytometry protocol and set-up51. For the logit-transformed frequency529

displacements, we use a first order approximation for the binomial variance such that,530

µt+1,t,i = [ ft+1,g,i(1− ft+1,g,i)nt+1,g,i]
−1 +[ ft,g,i(1− ft,g,i)nt,g,i]

−1 , (26)

where nt,g,i is the total number of cells detected in the flow cytometer.531

We fit the model to all of the data (frequency displacements), jointly inferring α , β , δI , Et , Mt,g, δE , and vM . We use the532

Hamiltonian Monte Carlo (HMC) algorithm implemented in STAN72 to jointly estimate the posterior of each parameter. We used533

a non-centered parameterization of the model to improve convergence of the hierarchical model. For the variance parameters,534

i.e. δE , δI , and vM , we use the Jeffrey’s prior for variance, p(x) ∝ x−2. To account for the non-centered parameterization for Et535

and Mt,g, we use a standard normal prior, x ∼ N(0,1), then multiplied both by the standard deviation parameters, Et → Et
√

δE536

and Mt,g → Mt,g
√

vM . For all remaining parameters, we used a uniform prior.537

Reanalysis of barcoded yeast data538

We reanalyzed the barcoded yeast strain time-courses from Venkataram et al. (2016)56. We excluded batch 2 from our analyses539

because it only had two biological replicates, while batches 1, 3, and 4 all had three biological replicates each. The serial540

dilution evolution experiments in Venkataram et al. were conducted such that there was one culture at time point 1, which was541

sampled for barcode sequencing, which was then split into three (or two) biological replicates, which were all sampled for542

all subsequent time points. We first computed the mean and variance of each barcode frequency across the three biological543

replicates at time point 2 (after one growth cycle apart). We only pooled mean-variance data points from batches 1 and 3 in544

Figure 6A because batch 4 behaved slightly differently than the other two, in that it had stronger decoupling noise (Figure 6B,D).545

However, the data from batch 4 still has the same asymptotic scaling behaviors (Figure S11). After plotting the relationship546

between the mean and variance of barcode frequencies, we computed a moving average of the relationship. We computed547

the moving average of var( f ) as a function of ⟨ f ⟩ with a multiplicative window (i.e. a constant sized window on log⟨ f ⟩).548

We went along the x-axis, and computed the average of var( f ) in between [⟨ f ⟩ · (1−w),⟨ f ⟩ · (1+w)], where we set w = 0.3.549

Changing the smoothing parameter w does not significantly alter the results. We computed confidence intervals by standard550

bootstrapping. We estimated power law exponents by performing ordinary least squares regression on the log-transformed551

variance against the log-transformed mean. For the low-frequency power-law fit, we used all points below ⟨ f ⟩< 5 ·10−5. For552

the high-frequency power-law fit, we used all points above ⟨ f ⟩ > 3 · 10−4. We chose those frequency ranges because they553

represented the approximate maximum ranges where the apparent power-law slope does not deviate significantly from the554

"asymptotic" power-law slope near the boundaries of the frequency ranges. We computed standard errors on the power-law555

exponents by standard bootstrapping.556

We then sought to estimate the mean squared displacement (MSD) of the log-transformed frequencies, at high frequencies557

such that decoupling noise is dominant (Figure 6B). The log transformation acts a variance-stabilizing transform; we can use558

this approximation (instead of a logit transform) as all barcodes here are at low frequency f ≪ 1. We expect that the MSD559

should linearly increase over time increments, with a slope determined by δ ,560

MSD(∆t) = ⟨
(
log f̃t − log f̃t−∆t

)2⟩ (27)
= δ∆t . (28)

We estimated the MSD for all pairs of time points that were either 1 or 2 time increments (∆t) apart. We filtered for high561

frequency barcodes at a mean frequency range from 5 ·10−4 to 5 ·10−3. We took f̃t as centered barcode frequencies, where we562

subtracted the average barcode frequency over all replicates in a batch, f̃t = ft −⟨ ft⟩. This is equivalent to subtracting the mean563

“fitness effect” over a pair of time points. We need a way to separate measurement error (uncorrelated in time) from biological564

decoupling noise (accumulates over time). We leveraged a previously utilized34 method to pull apart the two sources of noise.565

Briefly, in the presence of measurement noise, variance between two time points will be the sum of the decoupling noise and566

measurement noise (ζt ) for the two time points,567

κt,t−∆t = δ∆t +ζt +ζt−∆t . (29)

For every barcode, we compute the log difference at considered time point pairs, φ(t, t −∆t) = log f̃t − log f̃t−∆t . We then568

obtain a robust estimate of κ through the median absolute deviation, over all barcodes,569
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κ̂t,t−∆t ≈ 2.1981 · (med |φ(t, t −∆t)−medφ(t, t −∆t)|)2 . (30)

We obtain estimates for the standard error, std κ̂t,t−∆t , through standard bootstrapping. With the relationship between κt,t−∆t570

and the noise parameters (equation 29), we can estimate the noise parameters given all of our measured κ̂t,t−∆t . We do this by571

numerically minimizing the weighted squared difference, ∑ [(κt,t−∆t − κ̂t,t−∆t)/std κ̂t,t−∆t ]
2. We obtain our final estimate of the572

MSD by subtracting the measurement noise parameters from each κ̂t,t−∆t , and averaging over all values with the same time573

increment ∆t,574 ’MSD(∆t) = ⟨κ̂t,t−∆t − ζ̂t − ζ̂t−∆t⟩∆t . (31)

We obtained confidence intervals for the MSD via standard bootstrapping. We are uncertain about the scaling behavior of575

the measurement noise parameters, relative to the mean frequency. We treat the ζt parameters as constant, which should be576

a valid assumption if the measurement noise does not significantly change over the frequency range that we used. Using an577

even smaller frequency range does not seem to change our results significantly–we obtain similar results with a thinner mean578

frequency range of 7 ·10−4 to 2 ·10−3, albeit with higher error (as expected) (Figure S12).579

To model the contributions of intrinsic/extrinsic decoupling noise to the frequency trajectories of high-frequency barcodes,580

we turned to a similar set-up as previously considered (equation 25). We change the model to reflect the data structure,581

∆log ft,i ∼ N (αi +Et ,δI + ζ̂t+1 + ζ̂t) . (32)

We eliminated the “sharing mothers” parameters, and we included a barcoded-dependent mean fitness effect αi, which we582

fit for each barcode. We fit the model for each batch in the same manner as previously described.583

Evolutionary dynamics simulations584

We simulated the evolutionary dynamics of a two-genotype system to compare with our theoretical results on the evolutionary585

implications of decoupling noise, as shown in Figure 7. We directly simulated the number dynamics of each genotype, Ni, with586

the Langevin equation (following the approach of Melbinger and Vergassola (2015)21),587

dNi

dt
=

Å
µi −

Ntot

K

ã
Ni +Niξi(t)+

 
Ni

Å
µi +

Ntot

K

ã
ηi(t) . (33)

Here, Ntot = ∑i Ni, ηi(t) is standard Gaussian white noise, and ξi(t) is correlated Gaussian white noise, such that,588

⟨ξi(t)ξ j(t ′)⟩=


δ (t − t ′)c1A for i = j = A
δ (t − t ′)c1B for i = j = B
δ (t − t ′)ρAB

√
c1Ac1B for i ̸= j

(34)

The frequency dynamics, f = NA/(NA +NB), have previously been approximately derived from the abundance dynamics21,589

using a first order approximation. We see that those frequency dynamics are equivalent to the dynamics we derive (equation590

S20) when the classical genetic drift parameters are the same between genotypes, κA = κB. The fitness effect becomes591

s = µ1 −µ2, and the effective population size becomes Ne = K/2. We directly simulated the abundance dynamics in equation592

33 by discretizing time,593

∆Ni ≈
Å

µi −
Ntot

K

ã
Ni∆t +Niξ̃i(t)

√
∆t +

 
Ni

Å
µi +

Ntot

K

ã
η̃i(t)

√
∆t . (35)

Now η̃i(t) is a standard Gaussian random variable, and ξ̃i(t) is a Gaussian random variable with mean of 0 and a covariance594

matrix given by equation 34. We used initial conditions of NA = 10−3K and NB = K. In our simulations, we consistently used595

K/2 = 103, µA = 1, ρAB = 0.5, and c1 = c1A = c1B. We define the correlation between A and B as ρAB = cAB/
√

c1Ac1B. We596

set ∆t = 0.1, which seemed to sufficiently mitigate time-discretization error. We varied c1 and µB = 1− s in our simulations.597
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For the simulations to estimate fixation probability, we ran 105 independent simulations of the dynamics for each parameter set,598

where we ran the simulations until one of the genotypes fixed. We considered the major genotype as fixed when the minor599

genotype dropped below 0.1 in the population. We computed the fixation probability as simply the proportion of simulations600

where genotype A fixed in the population. Similarly for the simulations to estimate the site frequency spectra, we ran 2 ·104
601

independent simulations of the dynamics for each parameter set. We recorded the genotype frequency at each timestep until one602

of the genotypes fixed, and the appropriately normalized the data to obtain the expected density of A at a given frequency bin.603

Code, data, and strain availability604

All code and data presented in this manuscript are available at https://github.com/joaoascensao/giantpopflucts. All strains605

presented in this paper are available upon request.606
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Extended Data Figure E8. Relationship between abundance mean and variance (related to Figure 2). We cultured
monocultures of S and L, along with a coculture of S/L at three different culture sizes (although with the same media, and at the
same daily dilution rate). We split the cultures in each condition into 16 biological replicates, then measured abundance and
coculture genotype frequency after one growth cycle. (A-D) The abundance variance scales with the mean like a power law,
with an exponent of approximately 2. The exponent is not significantly different between genotypes, or between the
monoculture/coculture condition. (E) The covariance between S and L abundance also scales like a power law with an exponent
of two. (F) The frequency variance appears to decrease as a function of culture volume. This may represent evidence that the
culture environments differ enough to cause changes in fluctuation strength. All error bars represent 95% CIs.
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Extended Data Figure E9. Simulations of chaotic dynamics in a simple two-genotype system (related to Figure 4). (A)
We model the dynamics of two genotypes, A and B, as coupled logistic maps (in discrete time). The parameters KA and KB are
the carrying capacities of strains A and B, respectively. When the coupling parameter, c, goes to zero, we recover standard,
independent logistic maps. Here, we consistently use r = 3.9, which puts the populations in the chaotic regime. (B-C)
Examples of the abundance and genotype frequency dynamics. Here, we use c = 0.1. Even though the abundance dynamics are
mildly coupled to each other, we still see fluctuations creeping into the genotype frequency dynamics. (D-E) Mean-variance
scaling behaviors of the population abundance and genotype frequency. In both cases, we see power-law scaling with
exponents of two, indicating the presence of effective offspring number correlations and decoupling noise. We varied the
carrying capacities over several orders of magnitude to change the abundance and frequency. We computed the mean and
variance of trajectories ran for 105 iterations, and discarded the first 104 iterations (to control for transient behaviors). We see
that the degree of coupling does not affect the power-law exponent, but can change the intercept (as expected).
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Extended Data Figure E10. Estimate of sampling distribution of δI in Venkataram et al.56 data (related to Figure 6).
We used standard bootstrapping to separately estimate δI for adaptive haploids and diploids. We find that there are not
significant differences in the decoupling parameter between the two classes of beneficial genotypes. The solid lines represent
means of the sampling distribution; shaded regions represent 68% confidence intervals.

Extended Data Figure E11. Correlated fluctuations between barcoded clones, from Venkataram et al.56 data (related
to Figure 6). We computed the pairwise correlation in log-displacement between every pair of high-frequency clones over
every time point, replicate, and batch, i.e. corr(∆ log fi,t ,∆ log f j,t). Points represent correlation coefficients for every pair of
clones, and bars represent the average. Error bars represent 95% CIs. We see that, on average, pairs of haploid clones have
highly correlated displacements, followed by pairs of diploid clones, and then pairs consisting of one haploid and one diploid
clone.
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S1 Table of strains

Strain Name Internal Name Ancestor Fluorescent protein

REL606 eJA334 attTn7::sYFP2
REL606 ∆pykF eJA330 REL606 attTn7::mScarlet-I
6.5k S1 eJA246 REL11555 attTn7::eBFP2
6.5k L1 eJA245 REL11556 attTn7::sYFP2

S2 Effective model of population fluctuations

S2.1 Two-genotype case

To model the process of population fluctuations, we first consider a simple population consisting
of one genotype, where all individuals are identical. The change in population size of a genotype µ
from size Nµ in the current time point to size N ′

µ in the next time point can be decomposed as

∆Nµ ≡ N ′
µ −Nµ =

Nµ∑
i=1

n′
µ,i − nµ,i ≡

Nµ∑
i=1

∆nµ,i , (S1)

where ∆nµ,i ∈ [−1, 0, 1, . . . ], i ∈ [1, Nµ] is -1 plus the offspring number of the ith cell of the Nµ cells
of the µ genotype that exist at the current time step. We know that if all cells behave the same
way, we have to demand

⟨∆nµ,i∆nµ,j⟩ =
{
cµ,0 for i = j

cµ,1 for i ̸= j
(S2)

Here, the brackets ⟨·⟩ represent the mean of a random variable. This is the only mathematical form
of the covariance parameters that won’t change if we relabel the cells–a symmetry argument that can
easily be extended to multiple genotypes. This assumes that the offspring number distributions have
finite covariances, i.e. are not heavy-tailed. Note that c1 < c0 follows from 0 < ⟨(∆ni −∆nj)

2⟩ =
2c0 − 2c1.

We can express the variance in total population size in terms of c0 and c1,

var(N ′
µ) = var(∆Nµ) = ⟨(∆Nµ)

2⟩ (S3)

=

〈Nµ∑
i=1

∆nµ,i

2〉
=

〈Nµ∑
i=1

∆n2
µ,i +

Nµ∑
i=1

Nµ∑
j ̸=i

∆nµ,i∆nµ,j

〉
(S4)

= (cµ,0 − cµ,1)Nµ + cµ,1N
2
µ . (S5)
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The form of this variance scaling has been previously noted [1, 2]. Power law mean-variance scaling
of population abundance has been widely observed in ecology, where it is known as Taylor’s power
law [3, 4, 5, 6, 7]. For large enough values of Nµ, the distribution of N ′

µ will converge in distribution
to a gaussian random variable, because of the central limit theorem. So the fluctuations of N ′

µ will
solely depend on the variance, var(N ′

µ).

We can now extend the analysis to a population consisting of two genotypes labeled A and B,
possibly with non-identical properties (Figure 2A). We can generalize the below analysis to multiple
genotypes (SI section S2.3). Extending the symmetry argument from above, we now require five
covariance parameters to fully describe the population,

⟨∆nµ,i∆nν,j⟩ =



c0A for i = j and µ = ν = A

c0B for i = j and µ = ν = B

c1A for i ̸= j and µ = ν = A

c1B for i ̸= j and µ = ν = B

cAB for i ̸= j and µ ̸= ν

(S6)

The expression for the variance of the total population size for each genotype is the same as in
equation S5. The covariance of the total population sizes between genotypes is,

cov(N ′
A, N

′
B) = cABNANB = cABN

2
totfA(1− fA) . (S7)

Where Ntot = NA +NB is the total population size, and fA = NA/(NA +NB) is the frequency of
genotype A in the population. The frequency of a genotype will also change from one time point to
the next, induced by the fluctuations of individuals. The expected frequency variance at the next
time point can be written as,

var(f ′
A) =

〈( ∑NA

i=1 1 + ∆nA,i∑NA

i=1 1 + ∆nA,i +
∑NB

j=1 1 + ∆nB,j

− NA

Ntot

)2〉
(S8)

If we assume that the frequency deviations are small, we can expand in the deviations to obtain,

var(f ′
A) ≈ f2

A

〈(∑NA

i=1 ∆nA,i

NA
−
∑NA

i=1 ∆nA,i +
∑NB

j=1 ∆nB,j

Ntot

)2〉
(S9)

=
fA(1− fA)

Ntot
[(c0A − c1A)(1− fA) + (c0B − c1B)fA]

+ (c1A + c1B − 2cAB)︸ ︷︷ ︸
=δ

f2
A(1− fA)

2 . (S10)

We can approximate the expected frequency by expanding to second order,
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⟨f ′
A⟩ ≈

⟨N ′
A⟩

⟨N ′
tot⟩

− cov (N ′
A, N

′
tot)

⟨N ′
tot⟩2

+
var (N ′

tot)⟨N ′
A⟩

⟨N ′
tot⟩3

(S11)

=fA − fA(1− fA)

Ntot
[(c0B − c1B)− (c0A − c1A)]

+ c1BfA(1− fA)
2 − c1Af

2
A(1− fA)− cABfA(1− fA)(1− 2fA) (S12)

S2.2 Fluctuating environments

We can incorporate the effects of a fluctuating environment into our model, decomposing offspring
number fluctuations into intrinsic and extrinsic fluctuations. We consider a fluctuating environment
that causes genotype fitness to fluctuate with gaussian noise, w(E) ∼ N (s0, vE). Conditioned on the
environmental state, the covariance matrix ⟨∆nµ,i∆nν,j |E⟩ corresponds to equation S6, representing
the intrinsic fluctuations of the system. And so the total abundance variance conditioned on the
environmental state, var(N ′

µ|E), also corresponds to equation S5.

To consider the combined effect of the intrinsic and extrinsic fluctuations on the total population
abundance, we must marginalize out the effect of environmental fluctuations,

p(N ′
µ) =

∫
dw(E)p(N ′

µ|w(E))p(w(E)) . (S13)

The conditional abundance density will be gaussian by the central limit theorem,

p(N ′
µ|w(E)) = N (N ′

µ, w(E)Nµ, (cµ,0 − cµ,1)Nµ + cµ,1N
2
µ) . (S14)

Here, N (x, µ, v) is a standard gaussian density. We use a standard identity for the product of
gaussian densities,

N (ax, µ1, v1)N(x, µ2, v2) = N(µ1, aµ2, v1 + a2v2)N (x, aµ12, a
2v12)

µ12(µ1, µ2, v1, v2) =
µ1v2 + µ2v1

v1 + v2

v12(v1, v2) =
1

1/v1 + 1/v2

By rearranging, applying the above identity, and integrating equation S13, we obtain a final marginal
density of

var(N ′
µ) = (cµ,0 − cµ,1)Nµ + (cµ,1 + vE)N

2
µ . (S15)

Thus, the total strength of correlated abundance fluctuations is simply the sum of the strength of
fitness fluctuations (extrinsic source) and the strength of the intrinsic fluctuations. Applying the
same logic, it immediately follows that the decoupling parameter δ can also be decomposed into
intrinsic and extrinsic components, δ → δI + δE .
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S2.3 Generalization to m genotypes

When there are m distinct genotypes/species present in a population, possibly with differing off-
spring number covariances, what is the expected frequency variance?

We first consider the possible covariance parameters between the change in offspring number for
a single individual across a single generation, ∆nµ,i, where µ labels the genotype and i labels the
individual. Again, ∆nµ,i ∈ [−1, 0, 1, . . . ], i ∈ [1, Nµ] is -1 plus the offspring number of the ith cell
of the Nµ cells of the µ genotype that exist at the current time step. For m genotypes, we require
2m+m(m− 1)/2 covariance parameters:

⟨∆nµ,i∆nν,j⟩ =


c0µ for i = j and µ = ν

c1µ for i ̸= j and µ = ν

cµν for i ̸= j and µ ̸= ν .

(S16)

We define the initial frequency of genotype A (arbitrarily labeled) as,

fA =
NA

Ntot
, (S17)

where Ntot =
∑m

µ Nµ. The frequency after one generation is similarly defined, and labeled as f ′
A.

If we assume that frequency deviations are small, we can expand in the deviations to obtain,

var(f ′
A) ≈ f2

A

〈(∑NA

i=1 ∆nA,i

NA
−
∑m

µ

∑Nµ

i=1 ∆nµ,i

Ntot

)2〉
. (S18)

Following some algebra, and using equation S16, we arrive at the following expression,

var(f ′
A) ≈ fA(1− fA)

2 c0A − c1A
Ntot

+
f2
A

Ntot

∑
µ̸=A

(c0µ − c1µ)fµ

+ c1Af
2
A(1− fA)

2 + f2
A

∑
µ̸=A

c1µf
2
µ

− 2f2
A(1− fA)

∑
µ̸=A

cAµfµ + 2f2
A

∑
µ̸=A

∑
ν ̸=A

cµνfµfν . (S19)

We can see that the generalized equation has a similar form to the two-species case, where the
first two terms arise from independent offspring number fluctuations, and the remaining terms arise
from correlated offspring number fluctuations.
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S3 Evolutionary implications

To study the implications of decoupling noise, we consider our two-genotype model in the continuous
time diffusion limit under constant selection (assuming small deviations in total population size),

∂tf = [s+ κB − κA − c1Af + c1B(1− f)− cAB(1− 2f)] f(1− f)

+
√
f(1− f) [κA(1− f) + κBf ] + δf2(1− f)2η(t) . (S20)

Where η(t) is standard gaussian white noise, ⟨η(t)⟩ = 0 and ⟨η(t)η(t′)⟩ = δ(t − t′). We use the
approximate frequency mean and variance for the drift and diffusion terms from equations S12 and
S10, respectively. We have combined several parameters for notational simplicity,

κA = (c0A − c1A) /Ntot (S21)

κB = (c0B − c1B) /Ntot . (S22)

This model is similar to those analyzed in previous studies. Gillespie (1974)[8] studied the case
where δ = 0 but κA ̸= κB . Conversely, Melbinger and Vergassola (2015)[9] studied the case where
δ ̸= 0 but κA = κB .

S3.1 Fixation probability

Given that the genotype/mutant gets introduced into the population at some initial frequency f0,
what is the probability that it will fix in the population? To find this, we’ll use the Kolmogorov
Backward Equation (KBE) for this system. In general, the KBE is,

dΠ

dt
= v(f)

dΠ

df
+D(f)

d2Π

df2
(S23)

In this case, the drift and diffusion terms are given by,

v(f) = [s− κA + κB − c1Af + c1B(1− f)− cAB(1− 2f)] f(1− f) (S24)

D(f) =
1

2

[
f(1− f) (κA(1− f) + κBf) + δf2(1− f)2

]
(S25)

The steady state solution of equation S23 gives us the fraction of trajectories that end up at each
of the absorbing states (here: 0 or 1). After setting equation S23 to 0, and applying the boundary
conditions Π(0) = 0 and Π(1) = 1, we can rearrange and integrate to obtain a general solution for
the fixation probability,
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π(f) =

∫
dfe−

∫
dfv(f)/D(f) (S26)

pfix(f0) =
π(f0)− π(0)

π(1)− π(0)
. (S27)

For our system, the fixation probability becomes,

pfix(f0) =
A(f0)

2se/β −A
2se/β
0

A
2se/β
1 −A

2se/β
0

(S28)

A(f0) =

(
β + δ(1− 2f0)−∆κ

β − δ(1− 2f0) + ∆κ

)
(S29)

A0 = A(0) (S30)

A1 = A(1) (S31)

Or expanded,

pfix(f0) =

(
β+δ(1−2f0)−∆κ
β−δ(1−2f0)+∆κ

)2se/β
−
(

β+δ−∆κ
β−δ+∆κ

)2se/β
(

β−δ−∆κ
β+δ+∆κ

)2se/β
−
(

β+δ−∆κ
β−δ+∆κ

)2se/β (S32)

Which are in terms of new compound parameters,

β =
√
∆κ2 + δ(δ + 2(κA + κB)) (S33)

se = s+
1

2
(c1B − c1A −∆κ) (S34)

∆κ = κA − κB (S35)

We are typically interested in the case where the initial frequency of the minor genotype is small,
perhaps because it arose via spontaneous mutation in the population, or an individual with that
genotype migrated to the population. Thus, we would like to focus on the limit of small initial
frequency, f0 ≪ 1. We start by Taylor expanding equation S29 around f0 = 0,

A(f0) ≈A
2se/β
0 − 8f0δse

(β − δ +∆κ)2
A

2se/β−1
0

+
16f2

0 δ
2se(δ −∆κ+ 2se)

(β − δ +∆κ)2(β + δ −∆κ)2
A

2se/β
0 +O(f3

0 ) . (S36)
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Following some algebra, we see that the second-order term in the expansion is negligible compared
to the first-order term when,

f0 ≪ 2κA [δ + 2se −∆κ]
−1

. (S37)

In this limit, we can truncate equation S36 to first order in f0; the fixation probability becomes,

pfix(f0) ≈
2f0seA

2se/β
0

κA

(
A

2se/β
0 −A

2se/β
1

) . (S38)

With this expression, we now wish to analyze the behavior of pfix in the limit of weak selection,
se → 0. We thus expand in se,

pfix(f0) ≈
f0
κA

(
β

logA0 − logA1
+

se
2

)
+O(s2e) . (S39)

By comparing the first two terms, we see that pfix is approximately constant at low se,

pfix(f0) ≈
f0β

κA (logA0 − logA1)
. (S40)

This approximation is valid when se ≪ s∗e, where,

s∗e =
β

logA0 − logA1
(S41)

We recover the classical expression for the critical fitness effect when decoupling noise is weak,
δ ≪ κ, and when ∆κ = 0,

s∗e ≈ 1/Ne , (S42)

and thus we also see that the fixation probability when se ≪ s∗e is simply f0 in this case.

Now we turn to analyzing the opposite limit, where selection is strong. We will go back to the
unapproximated expression for pfix in equation S32. Rearranging, we obtain,
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pfix(f0) =
1−

(
A(f0)
A0

)2se/β
1−

(
A1

A0

)2se/β (S43)

=
1− e−

2se
β [logA0−logA(f0)]

1− e−
2se
β [logA0−logA1]

. (S44)

When se ≫ s∗e and ∆κ = 0, we can expand in either small δ or small Ne to recover Kimura’s
classical fixation probability [10],

pfix(f0) ≈
1− e−2seNef0

1− e−2seNe
(S45)

This approximation is also valid in the limit of weak decoupling noise, δ ≪ 6κ
f0(2f0−3) .

S3.2 Site frequency spectrum

The site frequency spectrum (SFS) describes the expected density of derived alleles at a given fre-
quency; specifically pSFS(f)df is the number of derived alleles in the frequency range [f − df/2, f + df/2]
[11]. We calculate the SFS for alleles affected by decoupling noise by leveraging previously described
approaches [12, 13] along with our Langevin equation (equation S20). We find a general closed form
solution for the SFS in terms of the frequency of alleles with parameters from A,

pSFS(fA) = θ
ϕ(fA)− ϕ(1)

(1− ϕ(1))(1− fA)fA
(S46)

ϕ(fA) =

(
(β + δ −∆κ)(β − δ(1− 2fA) + ∆κ)

(β − δ +∆κ)(β + δ(1− 2fA)−∆κ)

)2se/β

. (S47)

When f = 0.5 and ∆κ = 0, the SFS reduces to,

pSFS(0.5) = 4θ

(
β−δ
β+δ

)2se/β
− 1(

β−δ
β+δ

)4se/β
− 1

. (S48)

In the limit that δ ≫ 1/Ne,

β + δ

β − δ
≈ δNe . (S49)
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and,

pSFS(0.5) ≈
4θ

1 + (δNe)−2se/δ
. (S50)

Similarly, the limit of the SFS as f → 1 is,

pSFS(1) =
8δse

(β − δ)(β + δ)

(
1−

(
β−δ
β+δ

)4se/β) . (S51)

Applying the limit that δ ≫ 1/Ne,

pSFS(1) ≈
2seNeθ

1− (δNe)−4se/δ
. (S52)

If we are interested in the weak selection limit, where s → 0, and again ∆κ = 0 then equation S46
becomes,

pSFS =
θ

2fA(1− fA)

log
[
(1−fA)(δ−β)+2/Ne

(1−fA)(δ+β)+2/Ne

]
log
[

2/Ne

δ+β+2/Ne

] . (S53)

In the limit of strong decoupling noise, δ ≫ Ne, equation S53 becomes,

pSFS ≈ θ

2fA(1− fA) log (δNe)
log

[
(1− fA)δ + 1/Ne

fA/Ne

]
. (S54)

In the high frequency limit, (1− f) ≪ 1,

pSFS ≈ θ
log [(1− fA)δNe + 1]

2(1− fA) log (δNe)
. (S55)

We see that when we additionally apply the limit that (1 − fA) ≫ (δNe)
−1, we see that the SFS

shows an uptick in the intermediate-high frequency regime,

pSFS ≈ θ
1

2(1− fA)

(
log(1− fA)

log (δNe)
+ 1

)
. (S56)

We find that in the limit of weak correlated fluctuations, δ ≪ 1/Ne, and when κA = κB , equation
S46 reduces to the classical expression [14] for the site frequency spectrum for mutations under
constant selection, i.e.
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pSFS = θ
e2sNe(1− e−2s(1−fA)Ne)

(e2sNe − 1)fA(1− fA)
. (S57)

S4 Chaotic dynamics

S4.1 Variance between biological replicates

Here we show how exponentially increasing variance between biological replicates is equivalent to
exponentially diverging trajectories, which is characteristic of chaotic dynamics. Specifically, in a
one-dimensional system where we observe two trajectories, fi and fj , initially separated by ϵ, we
expect that at small times, their distance from each other will grow exponentially,

|fi(t)− fj(t)|= ϵi,je
λt . (S58)

In chaotic systems, λ > 0. If we observe N initially nearby trajectories, labeled fi (dropping the
time index for simplicity), then the variance between trajectories is,

var f(t) = N−1
∑
i

fi −
1

N

∑
j

fj

2

(S59)

= N−3
∑
i

Nfi −
∑
j

fj

2

(S60)

= N−3
∑
i

N2f2
i − 2Nfi

∑
j

fj +

∑
j

fj

2
 (S61)

= N−3

N2
∑
i

f2
i −N

∑
i

f2
i + 2

∑
i

∑
j>i

fifj

 (S62)

= N−2

(N − 1)
∑
i

f2
i − 2

∑
i

∑
j>i

fifj

 (S63)

= N−2

∑
i

∑
j>i

(fi − fj)
2

 . (S64)

From equation S58, we can then replace (fi − fj)
2 with ϵi,je

2λt, obtaining,

12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2024.02.23.581776doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581776
http://creativecommons.org/licenses/by/4.0/


var f(t) = var f(0) e2λt (S65)
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Figure S1: Fluctuations within the barcoded L library and relative to S (related to Figure 1A-B).
(A, B) Randomly barcoded libraries of E. coli strains S and L were propagated together in their
native serial dilution environment (previously reported data [15]). In the muller plot representation
of lineage sizes, we see that the total frequency of L relative to S shows large fluctuations. However,
neutral barcoded lineages within L show substantially smaller fluctuations relative to each other.

Figure S2: Coculture of REL606 and ∆pykF mutant (related to Figure 1D-E). (A) Cocultures were
split at day 0 into 8 biological replicates, then propagated separately in the same environment. Flow
cytometry measurements were taken every day. (B) We computed the variance between biological
replicates, and compared it to the expectation that classical genetic drift is the sole source of
population stochasticity, assuming Ne = 105. Error bars represent 95% CIs.
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Figure S3: Inferred power-law exponents for variance and covariance quantities, as a function of
mean S frequency (related to Figure 2). Error bars represent 95% confidence intervals, computed
via bootstrapping.

Figure S4: Ratio of abundance fluctuation strengths between S and L, including the f2 factor for
S (related to Figure 2). The ratio is equal to c1S/c1L under our model. We see that the ratio is
a small factor of order 1, indicating that S and L fluctuate by approximately the same amount.
Error bars represent 95% confidence intervals.
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Figure S5: Frequency-dependent fitness effects of S and L (related to Figure 2). We computed the
fitness effect of S relative to L across frequency. Consistent with prior measurements [16, 17], we
find negative frequency-dependent fitness effects. Error bars represent 95% confidence intervals.
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Figure S6: Correlation between the abundance of S and L (related to Figure 2). Our model predicts
that the correlation between abundance should be constant when decoupling noise is dominant
(ρAB = cAB/

√
c1Ac1B). But once classical genetic drift becomes non-negligible, the correlation

should decline; this perhaps indicates that the lowest data point is around the cross-over between
the drift- and decoupling-dominated regimes. We fit the theoretical curve to our experimental data
via ordinary least squares regression. Error bars are standard errors.
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Figure S7: Comparison of curve fits to the variance of overnight frequency trajectories (related to
Figure 4). (A) Best fits of various curves to the experimental variance measurements. (B) Akaike
Information Criterion (AIC) of fitted models to experimental data, to evaluate goodness-of-fit. We
computed FDR-corrected p-values to evaluate if the difference between the AIC of the exponential
model compared to the other fits was signficant. The p-values were p =0.018, 0.058, and 0.022 for
the comparison to the linear, quadratic, power law models respectively.

Figure S8: Cross-validation to compute Lyapunov exponent (related to Figure 4). We embedded
the overnight trajectories in dimensions 1-3 by using a lag of 1-2 time points. (A) We computed
the Lyapunov exponents using the method of Rosenstein et al. [18] for all conditions. (B) In
order to choose which set of dimension and lag hyperparameters were most suitable for our data,
we performed shuffle splitting cross-validation, and computed an out-of-sample mean squared error
(MSE) for all conditions. All error bars represent 95% confidence intervals.
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Figure S9: We quantified the rank correlation of replicates with its rank at the final time (related
to Figure 4). The increase in correlation in the last 7 hours further shows how the decoupling noise
accumulates over time, and that the rank position of each replicate is not “frozen in” earlier in the
time course.

Figure S10: Frequency-dependent fitness effects of S and L (related to Figure 5). Scatter points
represent change in logit frequency across a single day. Fitted line represents marginal frequency-
dependent effect from the hierarchical model, described in the main text.
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Figure S11: Frequency variance scaling in batch 4 in Venkataram et al.[19] data (related to Figure
6). Colored dashed lines represent the indicated scaling. Unconstrained power-law fits yields power
law exponents of 2.15± 0.13 at high frequencies and 1.03± 0.08 at low frequencies.

Figure S12: Mean squared displacement estimate computed with different frequency range, from
Venkataram et al.[19] data (related to Figure 6B). Here, we focused on barcodes from a thinner
mean frequency range (compared to the main text), 7·10−4 to 2·10−3. As there were fewer barcodes
in this range, the estimates are noisier. Error bars represent 95% CIs.
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Figure S13: Effective frequency-dependent fitness effect induced by decoupling fluctuations (related
to Figure 7). We simulated two uncorrelated population sizes with no selective difference, but that
experience both genetic drift and decoupling noise, NA,1 ∼ N

(
NA,0, (c0A − c1A)NA,0 + c1AN

2
A,0

)
and NB,1 ∼ N

(
NB,0, (c0B − c1B)NB,0 + c1BN

2
B,0

)
. In the simulations, we used c0A = c0B = 1 and

c1A = c1B = 0.01 (and cAB = 0). We defined f = NA/(NA + NB). We find that the stochastic
decoupling noise induces an effective frequency-dependent fitness effect, which agrees well with the
theoretical prediction, c1B(1− f0)− c1Af0 − cAB(1− 2f).
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A B

Figure S14: The dependence of pfix on se (related to Figure 7). We show simulation results (round
markers) and analytical predictions (solid lines) for the fixation probability, keeping δ constant
but varying c1A. We consistently use ρ = 0, so that c1B = δ − c1A. We show the fixation
probability as a function of (A) the raw fitness effect, s, and (B) the effective (constant) fitness
effect se = s+ (c1B − c1A)/2. When we consider the fixation probability as a function of se, we see
that the curves collapse into a single line. Additional parameter values used: δ = 0.2, f0 = 10−2,
and Ne = 103.
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Figure S15: Site frequency spectrum with decoupling noise and constant selection. The same as
Figure 7B, except where s = 0.02. The blue-green solid lines represent full analytical solutions for
dynamics with decoupling noise, across different values of δ. The round markers show simulation
results. The black dotted lines represent the case where there are no decoupling noise, but there
is still (constant) natural selection. The red dashed lines represents the case where there is neither
decoupling noise nor natural selection. We used c1A = c1B , ρAB = 0.5, Ne = 103 and s = 0.02.
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