

Contact Details

GSI: Ramon Estopina

Office Hours: Thursday 1:45-3:45 PM

Office: Evans 508-7

Email: <u>estopina@haas.berkeley.edu</u>

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 2

GSI: R. Estopina

Section 11 Agenda

- Administrative stuff (aprox. 5 min).
- Review of Last Session & Lecture (10 min).
- Problem 6 from PS#2 (10 min).
- Exercise 14-4 (10 min).
- Exercise 14-6/7 (10 min).
- Exercise 15-6/7 (5 min).
- Re-cap (aprox 3 min, let's see).

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 3

GSI: R. Estopina

Administrative Stuff - reminder

PS-2 will be returned Next Monday.

- Students not enrolled in class please check with Jaya (<u>jsil@are.berkeley.edu</u>) to attend section.
- Handouts (only sections 104 & 133) after class in:

http://www.ocf.berkeley.edu/~jaychen/econ1/

Please read: Read before downloading!.

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 4

GSI: R. Estopina

Review Session

- Finally will be Monday from 11 AM to 1 PM (sorry for those who can not make it).
- Room still to be confirmed. Will be posted on the ECON Website.
- Intention is to spend 30-45 minutes reviewing important stuff.
- Rest of the time doing problems from the previous midterm (plus the llama problem).
- Try to solve the midterm before coming to the review session.

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 5

GSI: R. Estopina

Review of Last Section - 9/30th

- Problems in:
 - Socially optimal outcome.
 - Coase Theorem.
 - Tragedy of Commons.
 - Rational Information Gathering/Search.
- Exercises 11-5 / 11-10 / 12-1

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 6

Review of Last Lecture - 9/30th

- Chapter 14:
 - Policies to regulate natural monopoly.
 - Marginal cost pricing of public services.
 - Taxation of pollution.
- Chapter 15:
 - Public Goods.
 - Provision of public goods (demand curve, free rider problem, elasticity)
 - What should we tax?

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 7

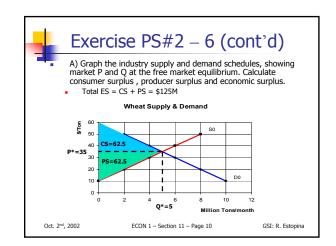
GSI: R. Estopina

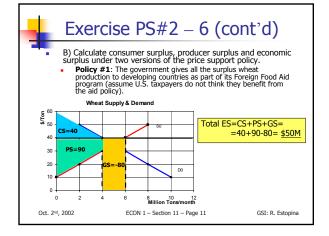
Important to remember !!

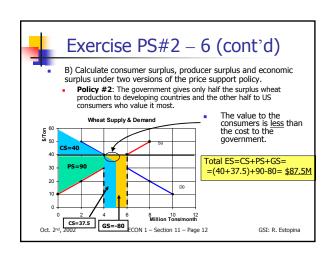
- Public policy: apply cost-benefit principle.
- Natural monopoly and Four Types of Government Control.
- Pricing Public Services (Health Care Delivery)
- Environmental regulation. Taxing pollution.
- Types of public goods. Demand curve.
- Paying for Public goods.

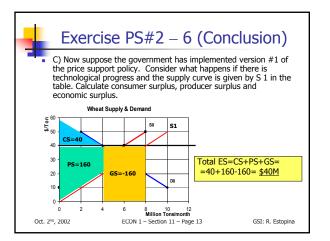
Oct. 2nd, 2002 ECON 1 – Section 11 – Page 8

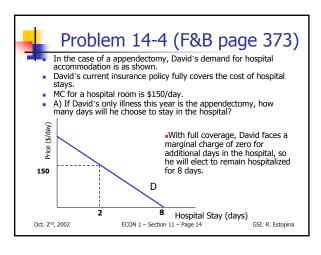
GSI: R. Estopina

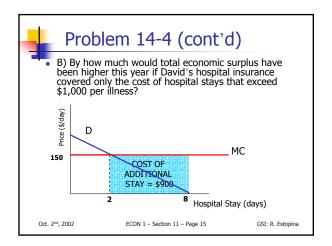

Exercise PS#2 - 6

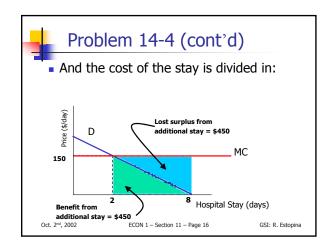

The US government is considering implementing a price support policy to assist US wheat farmers. The support price is to be \$40/Ton.


Price (\$/Ton)	Supply S0	Demand D0	Supply after TP (S1)
10	0	10	2
20	2	8	4
30	4	6	6
40	6	4	8
50	8	2	10


Oct. 2nd, 2002


ECON 1 - Section 11 - Page 9





Problem 14-4 (Conclusion)

- With insurance that covered only expenses greater than \$1,000, he would face a marginal charge of \$150/day, and would choose to stay in the hospital only two days.
- The cumulative amount by which the extra cost of an 8-day stay exceeds the extra benefit will be \$450, the area of the darker shaded triangle in the diagram below.
- Thus, the six extra days cost society \$900, but benefit David by only \$450.
- So total economic surplus would have been \$450 higher under the policy that covers only those expenses beyond \$1,000 per illness.

Oct. 2nd, 2002 ECON 1 – Section 11 – Page 17 GSI: R. Estopina

Problem 14-6 (F&B page 374)

- Two firms, Sludge Oil (SO) and Northwest Lumber (NL) have 5 production processes, with different costs and amount of pollution.
- A) If pollution is unregulated, which process will each firm use, and what will be the daily smoke emission?

Process	/ A \	В	С	D	E
Pollution (tons/day)	4	3	2	1	0
Cost to SO (\$/day)	50	70	120	200	500
Cost to NL (\$/day)	100	180	500	1000	2000

Oct. 2nd, 2002 ECON 1 – Section 11 – Page 18 GSI: R. Estopina

Problem 14-6 (cont'd)

- Both firms will use process A and emit 8 tons/day.
- B) Now city curbs smoke emissions by 50% and each firm has to reduce its emissions by 50%.
 What will be the total cost to society of this policy?

Process	A	В	C	D	E
Pollution (tons/day)	4	3	2	1	0
Cost to SO (\$/day)	50	70 120		200	500
Cost to NL (\$/day)	100	180	500	1000	2000

Oct. 2nd. 2002

FCON 1 - Section 11 - Page 19

GSI: R. Estopina

Problem 14-6 (Conclusion)

- Each firm must switch to process C.
- The cost will be:

■ SO: \$120 - \$50 = \$70

■ NL: \$500 - \$100 = \$400

■ Total = \$70 +\$400 = \$470.

Oct. 2nd. 2002

ECON 1 - Section 11 - Page 20

GSI: R. Estonina

Problem 14-7 (F&B page 374)

- Now the city wants to curb emissions by half.
- But now imposes a tax of \$T on each ton of smoke emitted per day.
- How large will T have to be to effect the desired reduction? What is the total cost to society of this policy?

Process	A	В	С	D	E
Pollution (tons/day)	4	3	2	1	0
Cost to SO (\$/day)	50	70	120	200	500
Cost to NL (\$/day)	100	180	500	1000	2000

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 21

GSI: R. Estopina

Problem 14-7 (cont'd)

- Remember: Total costs = Operating cost + T*Tons of smoke.
- Whenever the cost of cutting a ton of pollution is less than \$T/day, then the firm has an incentive o switch to a cleaner process.

Process	Α	В	С	D	E
Pollution (tons/day)	4	3	2	1	0
MC of reduction		- <i>T</i>	-T	-Т	-T
Cost to SO (\$/day)	50	70	120	200	500
MC of changing		+20	+50	+80	+300
Cost to NL (\$/day)	100	180	500	1,000	2,000
MC of changing		+80	+320	+500	+1,000

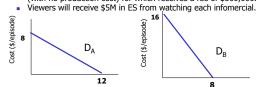
Oct. 2nd, 2002

ECON 1 - Section 11 - Page 22

GSI: R. Estopina

Problem 14-7 (Conclusion)

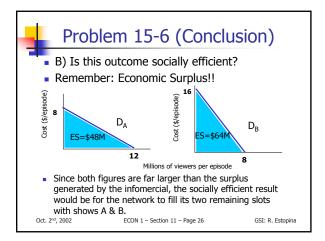
- Each firm will switch to a cleaner process if the cost of doing so is less than \$T.
- If T = \$81, Sludge Oil finds it worthwhile to switch from process A to D.
- Northwest Lumber finds it worthwhile to switch from process A to B.
- Sludge Oil thus cuts emissions by 3 tons, and Northwest Lumber by one.
- The total cost to society is:
 - SO: \$200 \$50 = \$150
 - NL: \$180 \$100 = \$80
 - Total: \$150 + \$80 = \$230.

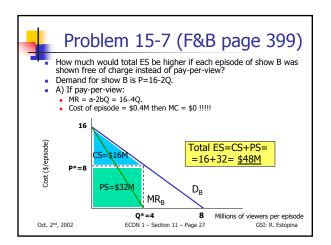

Oct. 2nd, 2002 ECON 1 – Section 11 – Page 23

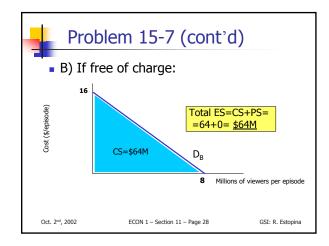
GSI: R. Estopina

Problem 15-6 (F&B page 398)

- Suppose demand for two TV shows are as shown.
- A TV network is considering to add 1 or both programs to the lineup.
- The only 2 remaining slots are sponsored by Colgate who pays the network \$0.1 for each viewer that watches the program.
- Production cost for network is \$400,000 per episode.
- If the network doesn't fill the slots, it can have infomercials (with no production cost) for which receives a fee of \$500,000.




Problem 15-6 (cont'd)


- A) How will the network fill the 2 slots?
- Let's look at revenues, costs and profits.

SHOW	Revenues	Costs	Profit
А	12M viewers*\$0.1 = \$1.2M	\$0.4	\$0.8M
В	8M viewers * \$0.1 = \$0.8M	\$0.4	\$0.4M
IM	\$0.5M	\$0	\$0.5M

Oct. 2nd, 2002 ECON 1 – Section 11 – Page 25 GSI: R. Estopina

Problem 15-7 (Conclusion)

 Since production costs of each episode would be the same under the two arrangements, total economic surplus per episode would be \$16 million larger if broadcast free of charge PBS than if shown on pay-per-view.

Oct. 2nd, 2002 ECON 1 – Section 11 – Page 29 GSI: R. Estopina

Summary

- Terms:
 - Marginal cost pricing of public services.
 - Taxation of pollution.
 - Public Goods.
 - Provision of public goods (demand curve, free rider problem, elasticity)
- Applied to: 5 problems.

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 30

Next class

- Next Class:
 - Section 12 + Review Session Monday, Oct 7th
 - You can download handouts this afternoon.
 - Read ch. 16 and review all previous material.
 - Thank you for coming on time !!!
- Enjoy the weekend !!.

Oct. 2nd, 2002

ECON 1 - Section 11 - Page 31