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Abstract—This letter presents a differential geometric control
approach that leverages SE(3) group invariance and equivariance
to increase transferability in learning robot manipulation tasks that
involve interaction with the environment. Specifically, we employ a
control law and a learning representation framework that remain
invariant under arbitrary SE(3) transformations of the manipu-
lation task definition. Furthermore, the control law and learning
representation framework are shown to be SE(3) equivariant when
represented relative to the spatial frame. The proposed approach
is based on utilizing a recently presented geometric impedance
control (GIC) combined with a learning variable impedance control
framework, where the gain scheduling policy is trained in a super-
vised learning fashion from expert demonstrations. A geometrically
consistent error vector (GCEV) is fed to a neural network to achieve
a gain scheduling policy that remains invariant to arbitrary trans-
lation and rotations. A comparison of our proposed control and
learning framework with a well-known Cartesian space learning
impedance control, equipped with a Cartesian error vector-based
gain scheduling policy, confirms the significantly superior learning
transferability of our proposed approach. A hardware implemen-
tation on a peg-in-hole task is conducted to validate the learning
transferability and feasibility of the proposed approach.

Index Terms—Machine learning for robot control, compliance
and impedance control, learning from demonstration.
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I. INTRODUCTION

L EARNING has become a prevalent method for robots
to acquire skills in automated manipulation tasks [1].

Most learning-based approaches are formulated using a Carte-
sian frame to represent the end-effector workspace. However,
Cartesian-based learning formulations lack learning transfer-
ability in that trained policies cannot be directly transferred to
arbitrarily translated/rotated task descriptions unless extensive
additional training is conducted [2], [3].

From the differential geometric perspective, the poor trans-
ferability of trained policies can be directly attributed to the
absence of SE(3) group equivariance in the Cartesian-based
learning framework. For instance, a group transformation (e.g.
translation/rotation) of the task definition does not result in a
corresponding transformation of trained policy and task exe-
cution. As a consequence, group-transformed tasks have to be
relearned, requiring a significant increase in training episodes
and learning resources.

Recently, in the field of geometric deep learning (GDL) in
computer vision applications [4], [5], the symmetry inherent
to a group structure within a domain has been exploited and
integrated into neural network models to enhance learning trans-
ferability and robustness to untrained data, thereby improving
sample efficiency. The key properties exploited by GDL are
group invariance and equivariance. Invariance refers to a prop-
erty of a map whose output remains unchanged when a group
action transforms its input, while equivariance implies that a
map’s output is transformed by the representation of the same
group action when its input is transformed by the group action.

Robotic manipulator workspaces have a group structure,
which is frequently represented by the Special Euclidean group
SE(3) [6]. In our previous work [7], we introduced a geomet-
ric impedance control (GIC) for robot manipulators that fully
incorporates the geometric structure of SE(3). GIC leverages
the left-invariance of the distance metric and potential function
in SE(3) to design a control law expressed in the body-frame
coordinate system.

In this letter, we leverage SE(3) group invariance and
equivariance, extensively studied in GDL, to enhance learning
transferability and sampling efficiency in contact-rich robotic
manipulation tasks. A Peg-in-Hole (PiH) task is used as a testbed
for evaluation since it is sensitive to SE(3) transformations (i.e.
translation/rotation) and involves contact-rich robot interaction
with the environment. A geometric learning variable impedance
control is presented that utilizes the GIC in [7] and incorporates
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a learning variable impedance control framework, where the
gain scheduling policy is trained in a supervised learning
fashion from expert demonstrations. A geometrically consistent
error vector (GCEV) is fed to a neural network to achieve a gain
scheduling policy that remains invariant under arbitrary SE(3)
transformations. The main contributions of our letter are:

1) We propose key components for learning transferability
in robotic manipulation tasks under dynamic feedback
control law: left-invariance and a control law formulated
in the body-frame coordinate system.

2) We provide a theoretical justification for our proposed
approach and demonstrate how learning transferability can
be achieved through these components.

3) We show that the proposed approach is equivariant when
described in the spatial frame, as the trained policy and
control law are invariant in the body frame.

4) We validate the feasibility of the proposed approach
through a hardware experiment, including a workflow for
data collection and policy training.

II. RELATED WORKS

A. Geometric Deep Learning for Robotics Problem

Geometric Deep Learning (GDL) has found success in image-
based data, particularly in medical fields [5], and has also been
applied in robotics [8], [9], [10]. These geometric approaches
leverage group structures’ invariance and equivariance. For in-
stance, SE(2) equivariance in [8] for image-based inputs, while
SE(3) equivariance is explored in [9], [10] for point cloud input
data. [9] introduces a descriptor field with SE(3) equivariance,
improving performance for out-of-distribution inputs, with fur-
ther enhancement in [10], [11], [12].

Equivariant structures have been pursued in other robotics
applications as well [13], [14], [15]. In [13], the translational
equivariance is achieved via soft correspondence. [14] attains
equivariance on the Euclidean group E(2) through data augmen-
tation, which is data-inefficient. [15] leverages SE(2) equivari-
ance for learning tabletop object manipulation but only within
the SE(2) space, without extending equivariance to control in-
puts.

Equivariant RL approaches have also been proposed in [16],
[17], [18] to enhance RL’s sample efficiency by leveraging
symmetries in the Markov Decision Process (MDP). However,
these equivariant RL approaches are generally applicable to
simple scenarios without consideration of dynamics or force
interaction [16] or are limited to SE(2) or SO(2) scenarios with
actions restricted to displacements [17], [18].

To date, the application of GDL in robotics has mainly
focused on point cloud or image inputs and simpler task
types without force interactions. Additionally, while control
methods remain prevalent in robotics research, the equivariance
properties of dynamic controls have yet to be fully explored,
emphasizing the growing need to integrate GDL concepts with
dynamic robot controllers.

B. Peg-in-Hole Task and Learning Variable
Impedance Control

The Peg-in-Hole (PiH) task is a benchmark problem for
force-controlled robotic manipulation tasks [19]. A widely uti-
lized approach to solve a PiH task is the variable impedance

control [2], [3], [20], where the controller’s impedance gains
change depending on the states. These approaches, however, do
not take into account the geometric structures of the manipulator.
As a result, it is reported in [2] that the success rate of a trained
policy dropped significantly under SE(3) transformations, i.e.,
when the peg position is tilted relative to the orientation used
for training. To deal with this issue, a typical approach is to
adopt the domain randomization technique as in [3], where both
the initial and goal poses of the end-effector are randomized
during the training. In contrast, our proposed approach achieves
robustness to out-of-distribution (OOD) goal poses and learning
transferability without randomizing goal poses during the train-
ing stage. We note that the proposed approach is not constrained
to the PiH task, but it can be extended to other manipulation tasks
with force interaction, such as surface wiping or pick-and-place.

III. PRELIMINARIES

A. Lie Groups and Manipulator Dynamics

The configuration of the manipulator’s end-effector can be
defined by its position and orientation, and the configuration
manifold lies in the Special Euclidean group SE(3). We can
represent the end-effector’s configuration frame {e} using the
following homogeneous matrix gse, to fixed a (inertial) spatial
frame {s}, as follows:

gse =

[
R p
0 1

]
∈SE(3), (1)

where R is a rotation matrix and R ∈ SO(3), and p ∈ R
3. We

will drop the subscript s since the spatial coordinate frame can be
considered as an identity without loss of generality. In addition,
we also drop the subscript e for the current configuration of the
end-effector for notational compactness unless specified, i.e.,
gse = g. We also use g = (R, p) for notational compactness.

The Lie algebra of SE(3), se(3) can be represented by

ξ̂=

[
ω̂ v
0 0

]
∈se(3), ∀ξ=

[
v
ω

]
∈R

6, v, ω∈R
3, ω̂∈so(3).

For the details of the Lie group for robotic manipulators, we
refer to [6], [21]. Note also that we utilize the standard hat-map
and vee-map notations as defined in [7].

The velocity of the end-effector relative to its body frame,
V b ∈ R

6 , can be calculated by:

V b =

[
vb

ωb

]
= (g−1ġ)∨, (2)

i.e., ġ = gV̂ b. The velocity V b can also be computed using the
body Jacobian matrix Jb(q) via V b = Jb(q)q̇. For the details
about Jb(q), we refer to Chap 5.1 of [21].

The dynamic equations of motion for rigid-link robotic ma-
nipulators are given by:

M(q)q̈ + C(q, q̇)q̇ +G(q) = T + Te, (3)

where M(q)∈R
n×n is the symmetric positive definite inertia

matrix, C(q, q̇)∈R
n×n is a Coriolis matrix, G(q)∈R

n is a mo-
ment term due to gravity, T ∈R

n is a control input, and Te∈R
n

is an external disturbance. As in [7], the manipulator dynamics
in operational space formulation [22], using the body-frame
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velocity, is represented as follows:

M̃(q)V̇ b + C̃(q, q̇)V b + G̃(q) = T̃ + T̃e, where

M̃(q) = Jb(q)
−TM(q)Jb(q)

−1,

C̃(q, q̇) = Jb(q)
−T (C(q, q̇)−M(q)Jb(q)

−1J̇)Jb(q)
−1,

G̃(q) = Jb(q)
−TG(q), T̃ = Jb(q)

−TT, T̃e = Jb(q)
−TTe,

(4)

where A−T = (A−1)
T . We will denote M̃(q) as M̃ , C̃(q, q̇) as

C̃ and G̃(q) as G̃ for the rest of the letter.

B. Geometric Impedance Control Law

We employ the geometric impedance control (GIC) law pro-
posed in [7]. We first note that g denotes the current configuration
matrix, with p and R in (1) representing the current position and
rotation matrix, i.e., g = (R, p). In a similar way, gd = (Rd, pd)
denotes the desired current configuration matrix. In a nutshell,
a GIC control law T̃ ∈ se∗(3) in the wrench is given by

T̃ = M̃V̇ ∗
d + C̃V ∗

d + G̃− f
G
−KdeV . (5)

where C̃, and G̃ are matrices in the operational space formulation
(4), Kd is symmetric positive definite damping matrix, f

G
is the

elastic generalized force in se∗(3) and eV is a velocity error
vector, both of them described on the body-frame, which will
be described subsequently. The elastic geometric wrench (force)
f
G
(g, gd) is given by

f
G
(g, gd) =

[
fp
fR

]
=

[
RTRdKpR

T
d (p− pd)

(KRR
T
d R−RTRdKR)

∨

]
, (6)

where Kp and KR denote symmetric positive definite stiffness
matrices in translation and rotation, respectively. The current
and desired velocity vectors cannot be directly compared, as
they lie on different tangent spaces. Therefore, we utilize a
vector translation map (Adjoint map) to first translate the desired
velocity to the tangent space of the current velocity [23]. The
error vector eV is defined by

eV = V b − V ∗
d =

[
eTv , e

T
ω

]T

V ∗
d = AdgedV

b
d , with Adgbd =

[
Red p̂edRed

0 Red

]
, (7)

whereV b
d is a desired velocity in the desired body frame, Adged :

R
6 → R

6 is an Adjoint map, Red=RTRd, ped=−RT (p−pd),
andV ∗

d is a translated desired velocity on the configuration body-
frame.

For the PiH task, we assumed that the final desired configura-
tion gd is given and is time-invariant, i.e., ġd(t) = 0. Thus, the
controller law (5) is modified as

T̃ = −f
G
−KdV

b + G̃, (8)

which can be interpreted as a PD control together with gravity
compensation. For more details on the GIC, such as derivation
and stability properties, we refer to [7] and its references [23],
[24]. Here, we define a geometrically consistent error vector
(GCEV) e

G
, which will be utilized in the learning impedance

gains later in this letter. The GCEV e
G
(g, gd) is defined as

follows:

e
G
(g, gd) =

[
ep
eR

]
=

[
RT (p− pd)

(RT
d R−RTRd)

∨

]
∈ R

6. (9)

Finally, we note that all the vectors/wrench, such as e
G

, eV , and
f
G

, are described in the body-frame coordinate unless otherwise
specified.

C. Cartesian Space Impedance Control

As a benchmark approach for the proposed GIC, we also
briefly introduce a Cartesian space Impedance Controller (CIC),
which is a currently standard method for impedance control.
In the operational space formulation, correctly representing
the rotational dynamics has always received significant inter-
est [25]. In particular, a positional Cartesian error vector e

C

widely utilized in CIC can be defined in the following way [26],
[27], [28].

e
C
=

[(
e
C,p

)T
,
(
e
C,R

)T ]T
, where

e
C,p

= p−pd, e
C,R

= (rd1
×r1 + rd2

×r2 + rd3
×r3), (10)

with R = [r1, r2, r3] and Rd = [rd1
, rd2

, rd3
]. Utilizing the po-

sitional error vector in Cartesian space and considering a fair
comparison with the GIC formulation, we will utilize the fol-
lowing CIC formulation for the PiH task.

T̃
C
= −K

C
e
C
−KdC

V s + G̃
C
, (11)

swhere G̃
C

can be obtained by replacing Jb by Js in (4), KdC
is

a damping matrix for the CIC, and K
C
= blkdiag(K

C,p
,K

C,R
)

with K
C,p

and K
C,R

are translational and rotational stiffness
matrices, respectively. In addition, Js denotes a spatial frame
Jacobian matrix and V s = Jsq̇. To implement control law (8)
and (11), the wrenches should first be converted to joint torque
T in (3) by multiplying corresponding Jacobian matrices, i.e.,
T = JT

b T̃ and T = JT
s T̃

C
, respectively.

We highlight the differences between the GIC and the CIC in
the following remark:

Remark 1 Differences between GIC and CIC: The main dif-
ferences between the GIC and the CIC are twofold:

1) CIC deals with translational and rotational dynamics sepa-
rately, but GIC deals with translational and rotational dynamics
as a unified entity, using the geometric elastic wrench f

G
(g, gd)

in (6).
2) GIC utilizes a body-frame Jacobian Jb while CIC utilizes

a spatial-frame Jacobian Js. Therefore, we can interpret that
GIC is formulated on the body frame coordinate attached to
the end-effector, while CIC is formulated relative to the spatial
frame.

IV. PROBLEM DEFINITION AND SOLUTION APPROACH

A. Problem Setup

1) Overview: Our ultimate goal is to provide a learning-
based solution to solve a peg-in-hole task, a classic represen-
tative of contact-rich force-based robotic manipulation tasks.
We will address this problem in the framework of learning
variable impedance control, where the gain scheduling policy
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Fig. 1. Robot performing a peg into a hole insertion task in different scenarios for testing learning transferability. The data is collected, and the policy is trained
only in performing the task shown in (a). The trained policy is then tested on the tasks shown in (b)–(e), where the insertion hole is translated in different orientations.
(b) tilted in +x direction for 30◦ (c) tilted in −y direction for 30◦ (d) tilted in −y direction for 90◦ (e) tilted in +x direction in arbitrary angle φ ∈ [−135◦, 135◦].
The coordinate frame is attached to the first figure.

of the impedance control laws is trained using learning algo-
rithms. In particular, behavior cloning (BC) from expert demon-
strations is utilized in a supervised learning fashion to obtain the
gain scheduling policy.

To achieve this, we introduce a gain scheduling policy param-
eterized by a simple neural network. This neural network takes as
input the positional signals representing the current end-effector
pose and the desired goal pose, such as e

G
and e

C
. We consider

the gain-scheduling neural network policy output as an action
(at) and input positional signals as the states (st). Formally,

at = μθ(st), (Kp,KR)t = h(at) = πθ(st), (12)

where h denotes a mapping from the action signal to the gains,
Kp and KR are impedance gains defined in (6) or (11), and
θ denotes parameters of the neural network μθ. We employ a
standard multi-layer perceptron (MLP) as a neural network. For
the rest of the letter, we will call πθ as a gain-scheduling policy
and drop the subscript t for the compactness of notation.

To show the effectiveness of the geometric formulation, we
will propose and compare two different approaches to learning
variable impedance control: 1. Selection of the control rule
(GIC vs CIC), 2. Selection of the states st (Geometric error
vs Cartesian error).

The performances are evaluated on four main scenarios in
Fig. 1. The gain scheduling policy μθ is trained only in the
default scenario (Fig. 1(a)). The trained policy is then tested
in the other scenarios (Fig. 1(b)–(d)) to evaluate its zero-shot
transferability and robustness to OOD data. All simulations
are conducted in the Mujoco simulation environment [29] for
environment setup and the Berkeley RL kit [30] for the RL
training. The GitHub repository of this project is published in
https://github.com/Joohwan-Seo/GIC_Learning_public.

2) Action Mapping to Gains: The mapping from the actions
to the impedance gains h(a) is defined here. To map the actions
from policy to impedance gains, we first consider diagonal
components of the matrix gains Kp and KR as follows:

Kp = diag([kp1
, kp2

, kp3
]), KR = diag([kr1 , kr2 , kr3 ]).

The damping matrix Kd is fixed as

Kd = 8 · diag([kp1
, kp2

, kp3
, kr1 , kr2 , kr3 ])

0.5 (13)

For the task shown in Fig. 1(a), a symmetric structure is
considered in the action mapping. Specifically, we have the same

action mapping in the x and y directions (kp1
and kp2

) and a
different mapping in the z direction. In the rotational part, the
action mapping for kr1 , kr2 , and kr3 is the same. The selected
action mapping is as follows:

kpi
= 10ai+2.5, for i = 1, 2, kp3

= 101.5·a3+2.0,

krj = 100.6·aj+2.0, for j = 1, 2, 3,

where a denotes an action, a = [a1, a2, . . . , a6]
T ∈ [−1, 1]×

· · · × [−1, 1] ⊂ R
6.

B. Solution Approach

In this subsection, we will first introduce our proposed ap-
proach. In what follows, the behavior cloning (BC) to obtain the
gain-scheduling policy is introduced.

1) Proposed Approach: Our proposed approach utilizes GIC
with a learning impedance gain scheduling policy, where the
input to the neural network s is the GCEV eg(g, gd) defined in
(9). The action from the gain scheduling policy then becomes
(Kp,KR) = πθ(eG

). The GIC control law (6) equipped with
gain scheduling policyπθ(eG

) has a crucial property for learning
transferability as shown in the following lemma.

Lemma 1: Left-invariance of the GCEV (9) and the elastic
wrench (6) e

G
(g, gd) and f

G
(g, gd) are left-invariant to the

arbitrary left-transformation gl in SE(3).
Proof: Let gl = (Rl, pl). Then, the left-transformed homo-

geneous matrix glg is calculated in the following way:

glg =

[
Rl pl
0 1

] [
R p
0 1

]
=

[
RlR Rlp+ pl
0 1

]

Similarly, glgd = (RlRd, Rlpd + pl). The left-transformed
GCEV is then

e
G
(glg, glgd) =

[
RTRT

l (Rlp+ pl −Rlpd − pl)(
(RlRd)

TRlR− (RlR)TRlRd

)∨
]

=

[
RT (p− pd)

(RT
d R−RTRd)

∨

]
= e

G
(g, gd) (14)

As a result, the gain scheduling policy πθ(eG
) is also left-

invariant, i.e., let (Kp,KR)(g, gd) = (πθ ◦ eG
)(g, gd), then
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(Kp,KR)(glg, glgd) = (Kp,KR)(g, gd). Similarly, the left-
transformed elastic wrench is

f
G
(glg, glgd)

=

[
(RlR)TRlRdK

l
p(RlRd)

T (Rlp+ pl −Rlpd − pl)
(Kl

R(RlRd)
TRlR− (RlR)TRlRdK

l
R)

∨

]

=

[
RTRdKpRd(p− pd)

(KRRdR−RTRdKR)
∨

]
= f

G
(g, gd), (15)

where we used notations (Kl
p,K

l
R) = (Kp,KR)(glg, glgd) and

(Kp,KR) = (Kp,KR)(g, gd) to avoid clutter. This shows the
left-invariance of e

G
(g, gd) and f

G
(g, gd). �

Domain Randomization: Domain randomization is a crucial
technique in both BC and RL to enhance robustness by allowing
the neural network to explore a broader range of state space [31].
In conventional impedance gains learning problem [3], domain
randomization is typically applied to both the initial and goal
end-effector poses. However, under the proposed GIC frame-
work, domain randomization is only necessary for the initial
pose of the end-effector, as demonstrated in the following propo-
sition.

Proposition 1: For the learning variable impedance control
problem based on GIC law (5), the following equation holds
true:

f
G
(g, glgd) = f

G
(g−1

l g, gd) (16)

Proof: By lemma 1, f
G
(g, gd) is left-invariant to arbitrary

SE(3) transformation gl acting on the left, i.e., f
G
(glg, glgd) =

f
G
(g, gd). Then, (16) becomes

f
G
(g, glgd) = f

G
(glg

−1
l g, glgd) = f

G
(g−1

l g, gd). (17)

�
The effects of Proposition 1 on learning strategies are as

follows. First, since the main driving force of (8) with gain
scheduling policy is f

G
(g, gd) in (6), we focus on the properties

of f
G
(g, gd). The domain randomization on the target pose can

be represented by f
G
(g, glgd) where gl ∈ SE(3) is arbitrary.

Then, the result of Proposition 1 reads that

f
G
(g, glgd) = f

G
(g−1

l g, gd)

Note that following the axioms of groups (Chap 2.1, [6]), g−1
l

can be denoted by another group element g′l since gl is arbitrary.
Finally, f

G
(g′lg, gd)means that the domain randomization on the

target pose of the end-effector is identical to randomization on
the initial pose. Therefore, independent domain randomizations
on both the target pose and the initial pose are not necessary
during the training process. Only the initial pose relative to the
target pose needs to be randomized, or vice versa, but not both.
This result is crucial in robotics applications where the cost of
collecting data in the real world is substantial.

2) Behavior Cloning (BC): We employed naive behavior
cloning to directly estimate the impedance gain for the given
input states in a supervised learning fashion from the expert’s
demonstration. The learning problem for behavior cloning can
be defined as θ∗ = argminθ

1
N

∑N
i=1 ‖ai − μθ(si)‖22,whereN

is the length of the dataset. We collect 300 expert demonstration
trajectories withN ∼ 450 k. The BC policy is trained following
the standard deep learning fashion - stochastic gradient descent

TABLE I
SUCCESS RATES OF THE BC POLICIES FOR THE PROPOSED AND THE

BENCHMARK APPROACHES (TESTED 100 TIMES EACH, VALUES IN

PERCENTAGE %)

on a sampled batch dataset with an Adams optimizer, learning
rate schedule, and early stopping.

To collect the required dataset in the simulation environ-
ment, we develop a heuristic rule-based scripted expert policy.
The main intuition is to use small z gains and high gains in
the x and y directions when the robot approaches the hole while
using high z gains during the insertion to overcome the friction
between the peg and the hole. As a result, the robot first aligns
the peg with the hole’s axis and then gradually pushes the peg
into the hole. The expert’s gains are selected by trial and error,
depending on the error signal e

G
. During data collection for BC,

small amounts of noise are added to the scripted expert policy
to enhance robustness.

V. EXPERIMENTS AND DISCUSSIONS

A. Behavior Cloning (BC)

The results of the BC experiments are presented in Table. I.
Each task was tested 100 times, and the success cases were
counted. The BC policy trained with the GCEV and executed
with the GIC (GIC+GCEV) successfully transferred the trained
policy to the other tasks, without significant drop in the success
rate. However, the BC policy trained with a CEV and executed
with CIC (CIC+CEV) failed to transfer the trained policy, re-
sulting in a dramatic decrease in the success rate. The reason
for this difference in transferability can be attributed to the error
vector representation. The relationship between left invariance
and transferability is further explained in Remark 2.

Remark 2: Why does left-invariance matter? The left-
invariance of the error vector implies that the chosen error
vector is invariant to the selection of the coordinate system.
In this letter, we interpret left-invariance in a slightly different
manner. Consider the situation where the desired and current
configurations are transformed through a left action of the SE(3)
group, which corresponds to a change in the spatial coordinate
frame – See Fig. 2 . Due to the left-invariance of the GCEV (9),
the error vector remains unchanged in cases (a) and (b) in Fig. 2.
Therefore, from the perspective of the proposed approach, the
task remains invariant to translational/rotational perturbations.
In this perspective, the use of the left-invariant error vector
e
G

can help address distributional shift or out-of-distribution
issues, as the trained policy will consistently encounter the same
input e

G
.

B. Left-Invariance is Not Enough

The question arises whether training a policy based on GCEV
or equivalent left-invariant features enables transferability to
translational/rotational perturbations. To answer this question,
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Fig. 2. (Left) Peg and hole configurations are represented by g and gd,
respectively. (Right) Peg and hole undergo left transformation via an action
gl ∈ SE(3). The GCEV e

G
(9) and elastic force f

G
(6) are invariant to the left

transformation of SE(3). {s} represents spatial coordinate frame, while {B} and
{B′} represent body coordinate frames.

Fig. 3. Time-snap plots of for PiH task executed by (Left) GIC+GCEV, and
(Right) CIC+GCEV. The numbers in the figure denote the time snap index, and
the red arrow denotes the insertion direction. The desired point is located at the
tip of the arrow. While GIC successfully first aligns with the axis of the hole
as expert policy, CIC first aligns with the Cartesian z axis as it is trained in
the default case (Fig. 1(a)).

we test different combinations of trained gain scheduling poli-
cies and control methods: BC policy with Cartesian error vec-
tor executed with GIC (GIC+CEV) and BC policy with a
GCEV executed with CIC (CIC+GCEV). If left-invariance of
the feature were the only factor for transferability, we would
expect the BC policy with the Cartesian error vector executed
with GIC (GIC+CEV) to not be transferable due to the lack
of left-invariance in the Cartesian error vector. Conversely,
the BC policy using a GCEV executed with CIC would be
transferable.

However, the experimental results presented in 3rd and 4th
rows of Table I contradict the hypothesis. The GIC with a gain
scheduling policy trained with the Cartesian error vector (GIC
+ CEV) showed some transferability in Case 1 and Case 2, with
success rates near 50%. However, in Case 3, with a tilt of 90
degrees, the success rate drops to 27% due to encountering an un-
experienced state distribution. This suggests that a left-invariant
gain scheduling policy alone is not enough for transferability.

On the other hand, the CIC using a GCEV produced results
consistent with our hypothesis. Even though the gain scheduling
policy for CIC was trained with a GCEV, the direction of the
gains and resulting force direction are still represented in the
Cartesian frame. Thus, the policy outputs the same gains it was
trained on, but the resulting force direction is not suitable for
tilted cases – see in Fig. 3.

Consequently, it is concluded that the left-invariant gain
scheduling policy alone is not enough, and a more fundamen-
tal factor is needed to address transferability - the direction

of forces. Unlike CIC, the forces in GIC are defined in the
body frame, resulting in the automatic change in the direction
of forces (See Fig. 2, f

G
on each case) – which implies an

equivariance property. We state that the key to transferability
lies in a control law represented in the body-frame coordinate
and the left-invariant gain scheduling policy. The invariant gain
scheduling policy is obtained from the neural network with a
GCEV as input, while the left-invariant feedback control law is
inherited from the structure of GIC. To establish a connection
between our statement and the equivariance property, we first
present the definition of equivariance.

Definition 1: Consider a function f : X → Y , i.e., y = f(x)
withx ∈ X and y ∈ Y . The function f is equivariant to the group
g if the following condition is satisfied [4]:

f(ρXx) = ρYf(x) (18)

where ρX represents the action of group g in the domain X and
ρY represents the action of group g in the codomain Y .

Based on Definition 1, we propose the following proposition.
Proposition 2: The feedback terms in GIC law (5) described

in the body frame are equivariant if it is described in the spatial
frame.

Proof: Consider the feedback terms f
G
(g, gd) (6) and

eV (g, gd) (7), which are denoted on the body frame. See Fig. 2
for the coordinate systems. To show the equivariance property,
we first show that the invariance on the body frame implies
equivariance on the spatial frame.

Let fs
G
(g, gd) be f

G
(g, gd) denoted in the spatial frame {s}.

We note that g and gd are described on the spatial frame
{s}. Then, the left-transformed elastic force can be denoted by
f
G
(glg, glgd) on the transformed body frame glg and is left-

invariant by lemma 1, i.e., f
G
(glg, glgd) = f

G
(g, gd). We now

consider the left-transformed elastic force fs
G
(glg, glgd) with

respect to the spatial frame {s}. The coordinates of the wrenches
between the body and the spatial frame can be transformed by
the following equations (see Ch. 2.5 of [6]):

fs
G
(g, gd) = AdT

g-1fG
(g, gd)

fs
G
(glg, glgd) = AdT

(glg)-1fG
(glg, glgd) = AdTg-1g-1

l
f
G
(g, gd),

(19)

where the Adjoint map is defined in (7). Therefore, the following
equations hold:

fs
G
(glg, glgd) = AdT

g−1g−1
l
(AdT

g−1)-1fs
G
(g, gd)

= (AdgAdg−1g−1
l
)T fs

G
(g, gd) = AdT

g−1
l
fs
G
(g, gd), (20)

where we use a composition rule for the Adjoint map,
Adg1Adg2 = Adg1g2 , and an inverse property of the Adjoint
map, (AdT

g )
−1 = AdT

g-1 . Here, the domain X in Def. 1 is SE(3)
(g or gd), and the representation ρX is gl, while the codomain Y
is se∗(3) (fs

G
(g, gd) or fs

G
(glg, glgd)) and the representation ρY

is AdT
g-1
l

. Therefore, fs
G
(g, gd) is equivariant in SE(3).

Similarly, to show the equivariance of eV (g, gd) (7) on the
spatial frame, the invariance on the body frame is only needed.
The body frame velocities V b and V b

d are invariant to the left
transformation since it is defined on the body frame and the
Adjoint map Adged is invariant as the relative transformation
matrix ged = g−1gd is invariant to the left transformation. As
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TABLE II
COMPARISON BETWEEN GIC+GCEV AND GIC+CEV WITH

DATA AUGMENTATION

a result, the feedback terms in GIC law (5) are equivariant in
SE(3). �

Note that we only consider feedback terms in (5) since the
feedforward terms are just employed to cancel the manipulator
dynamics, not affecting the closed-loop dynamics. A remark on
the Proposition 2 is provided.

Remark 3 Extensions to general force-based policy:
It is worth mentioning that our concept proposed in

Proposition 2 can also be extended to general force-based poli-
cies. If a force-based policy is left-invariant in the body-frame,
e.g., implemented using a neural network with left-invariant
features as input, and described in the end-effector body frame,
it will be guaranteed to be left-equivariant in the spatial frame.
The GCEV (9) introduced in this letter is an example of such a
left-invariant feature.

C. Demonstration of Sample Efficiency

In addition to its enhanced learning transferability, equivariant
learning approaches offer a significant advantage in terms of
increased sample efficiency. To evaluate whether our proposed
method demonstrates improved sample efficiency, we trained a
gain scheduling policy with CEV, making the GIC+CEV non-
equivariant, while employing data augmentation, as illustrated
in Case 4 of Fig. 1(d). To simplify the testing, we assumed that
the goal pose is only rotated in the +x axis. The dataset was
collected across tilting angles ranging from −90◦ to 90◦ in the
+x axis. As the state space region that the neural network needs
to memorize expands, it becomes necessary to increase its size.

The comparison results are summarized in Table II. When
tested within the training region, both GIC+GCEV and
GIC+CEV with data augmentation showed near-perfect per-
formance, with a slight advantage for GIC+GCEV. However,
in OOD scenarios, the success rate of GIC+CEV with data
augmentation dropped as it encountered OOD data inputs. Even
with the goal pose tilting in only one direction, it required 8.6
times more data points and neural networks that were 2.3 times
larger. It is important to note that if tilting occurs in different
dimensions, the required samples and neural network size will
increase in power scale. These results demonstrate the superior
sample efficiency of the equivariant policy compared to the
non-equivariant one.

VI. HARDWARE EXPERIMENT

To validate the proposed concept, we implemented our meth-
ods on the hardware robot; Fanuc 200iD/7 L. The proposed
approach is tested in a tight PiH task, where the clearance
between the peg and hole is 0.05mm. For ease of hardware

Fig. 4. Real robot experiment description. Training Stage: Schematic for
the data collection method is shown. The data is collected on the default case.
Execution Stage: The trained policy is then directly tested on the holes with
different positions/orientations. Upper-left: Default Case. Upper-right: the hole
is tilted 30◦ in +x axis (Case 1), Lower-left: −22.5◦ in +y axis. (Case 2).

implementation, we implement the GIC (geometric impedance
control) as a Geometric Admittance Control (GAC) law. To de-
fine the admittance control version of the GIC (GAC), the desired
closed-loop control system MėV +KdeV + f

G
(g, gd) = T̃e is

first considered, where M is a fixed desired inertia matrix, Kd

is a fixed damping matrix, T̃e is an external force acting on the
end-effector, and f

G
is our beloved elastic wrench (6) in SE(3).

Since our task is a PiH, we again fixed the desired configuration
gd as a constant, which leads to the following desired closed-loop
system:

MV̇ b +KdV
b + f

G
(g, gd) = T̃e. (21)

In what follows, we formulate (21) into a discrete-time setting
for the derivation of the admittance control law.

V b(k + 1)=V b(k)+Δt ·M−1
(
T̃e(k)−f

G
(k)−KdV

b(k)
)
,

where we use f
G
(k) to denote f

G
(g, gd) at k instance for sim-

plicity, and Δt is a sampling time. The V b(k + 1) term can then
be considered to be the desired velocity at the k + 1 instance.
Thus, the geometric admittance control law now boils down to a
joint-space velocity PD control, with desired joint-space velocity
q̇d(k) given as q̇d(k) = (Jb(k))

−1V b(k). For the impedance
learning problem, the dataset {(e

G
, (Kp,KR))i}Ni=1 is required.

The data collection process is summarized in the training stage
of Fig. 4. The robot is provided with gd = (Rd, pd) and is
controlled by the GAC to execute a PiH task. The human expert
supervising this task process changes the gains (Kp,KR) of
GAC in real-time using the GUI, and the gain signals are sent to
the manipulator with an ethernet UDP communication protocol.
The output signal e

G
is received from the communication mod-

ule and is recorded alongside the gain command signal as the
dataset. We collected 75 trajectories, which sums up to ∼250 k
of dataset size. Similar to the simulation experiment, we also
collected data and trained policy only on the default case, and
tested on the tilted cases, as summarized at the execution stage
in Fig. 4. We set the failure case when the peg is stuck to the
whole, e.g., the task cannot be completed within 60s.

The result of the hardware validation is presented in Table III.
As can be seen in the result, the proposed approach of utilizing
GIC (or GAC) together with the gain scheduling policy imple-
mented with GCEV showed perfect success rates, and the trained
policy was transferrable to previously unseen cases.
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TABLE III
SUCCESS RATES OF THE BC POLICY FOR THE PROPOSED APPROACH IN THE

HARDWARE IMPLEMENTATION (TESTED 10 TIMES EACH, VALUES IN

PERCENTAGE %)

VII. CONCLUSION AND FUTURE WORKS

In this letter, a geometric approach leveraging SE(3) group in-
variance and equivariance for contact-rich robotic manipulation
task learning is presented. To solve the Peg-in-Hole (PiH) task,
the proposed approach builds on top of the geometric impedance
control (GIC), where its impedance gains are changed via a
left-invariant gain scheduling policy. Expert behavior cloning
is chosen for training the gain scheduling policy. Through
theoretical analysis, we prove that the proposed GIC and the
geometrically consistent error vector (GCEV) used for learn-
ing are left-invariant relative to SE(3) group transformations
when represented in the end-effector’s body frame system,
enabling learning transferability. Furthermore, we show that
left invariance in the body-frame representation leads to SE(3)
equivariance of the proposed approach when described in a spa-
tial frame. A PiH simulation experiment confirms the learning
transferability of our proposed method, which is not exhibited
by the well-known Cartesian space-based benchmark approach.
These results are further validated on an actual PiH robotic
hardware implementation, and the pipeline for the hardware
implementation is also presented.

For future work, we will address more realistic scenarios
where the exact goal poses are unknown and need to be estimated
via sensors, e.g., images or point cloud-based inputs. Moreover,
the proposed approach will also be demonstrated in the other
types of contact-rich and force-related tasks, such as surface
wiping, cable assembly, and pivoting [32].
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