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This lecture note provides a review of regression with panel data (Stock & Watson, Chapter 10).
This lecture note is not intended to be a comprehensive review of lecture or the textbook, since there is
a lot more material than we have time to cover. However, I have tried to focus on the concepts which I
believe are necessary to be successful in our class.

1 Example: Traffic Deaths and Beer Taxes

For this lecture, we will use the following example in the US context. Drunk driving is a major cause of
fatal car crashes (e.g., as much as 25% of all fatal car crashes involve a driver who had been drinking).
To address this issue, many states have implemented various government policies, such as taxing beer.
Our goal is to investigate whether beer taxes—which is designed to discourage drunk driving—are indeed
effective in reducing traffic deaths.

We have panel data on 48 states for the years 1982 to 1988. Two of the variables in the data are: (1)
fatality rate, which is the number of traffic deaths per 10,000 people in each state and year; and (2) beer
tax, which is the tax in dollars per case of beer (adjusted for inflation). How does this data look like? If
we were to open it like a “spreadsheet,” it would look like this:

State Year Fatality Rate Beer Tax
Alabama 1982 2.128 1.539
Alabama 1983 2.348 1.789
Alabama 1984 2.336 1.714
Alabama 1985 2.193 1.653
Alabama 1986 2.669 1.610
Alabama 1987 2.719 1.560
Alabama 1988 2.494 1.501
Arizona 1982 2.499 0.215
Arizona 1983 2.267 0.206
Arizona 1984 2.829 0.297
Arizona 1985 2.802 0.381
Arizona 1986 3.071 0.372
Arizona 1987 2.767 0.360
Arizona 1988 2.706 0.347

As you can see in the above table, in panel data, each entity (e.g., Alabama, Arizona) is observed for
multiple time periods. This means that we will need two subscripts to denote each observation, since one
observation is one particular entity at a particular point in time. The subscript i is used for the
entity that we are following over time (in our example, these are states), and i = 1, ..., n where n denotes
the total number of entities that we have. The subscript t is typically used to denote time periods,
and t = 1, .., T where T denotes the total number of time periods we observe. If we have a balanced
panel, then the data will have n · T total observations. Note that in the dataset described above, n =
48 (because our panel data has 48 states) and T = 7 (because we observe seven years, from 1982 to 1988).

Why do we care about panel data? We care because it allows us to overcome omitted variable bias.
It allows us to control for some types of omitted variables even without actually observing them.
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2 Regressions with Entity Fixed Effects

2.1 Overview

Regressions with entity fixed effects allows us to control for omitted variables that vary across entities
(e.g., states) but do not change over time. This type of model has n different intercepts, one for each
entity. These intercepts can be represented by a set of binary variables. These binary variables absorb
the influences of all omitted variables that differ from one entity to the next but are constant over time.

Consider the regression model

FatalityRateit = β0 + β1BeerTaxit + β2Culturei + uit (1)

We want to estimate β1, which is the effect of the beer tax on the traffic fatality rate, holding culture
constant. In other words, in this regression, we would like to control for Culturei, which represents the
local cultural attitude in state i towards drinking and driving. If we did not include it in the regression,
the regression would suffer from omitted variable bias. Why? Recall the two conditions for OVB: (1)
cultural attitudes is correlated with the beer tax (e.g., some states in the US are more religious than oth-
ers, and these states might want higher taxes on beer); and (2) cultural attitudes is correlated with the
fatality rates (e.g., some states which are more rural may have a culture of driving big pick-up trucks).
Hence, Culturei is an important omitted variable that should be included in the regression.

There are two key aspects here. First, cultural attitudes (unlike variables such as education and income)
is an unobservable characteristic. So even if we tried very hard, we may not be able to find data that
will allow us to include Culturei in the sample regression. We want to control for Culturei to avoid
omitted variable bias, but Culturei cannot be measured. What can we do about this? As we will see,
this is where panel data can help us.

Second, Culturei is constant over time for a given state: local cultural attitudes toward drinking and
drive changes slowly, and thus could be considered constant between 1982 and 1988 in a particular state.
This means regression equation (1) above can be interpreted as having n intercepts, one for each state.
Specifically let αi = β0 + β2Culturei. Then, we can re-write equation (1) as

FatalityRateit = αi + β1BeerTaxit + uit. (2)

Equation (2) is what is called the fixed effects regression model, in which the parameters α1, α2,
. . ., αn are treated as unknown intercepts to be estimated (i.e., one for each state).

The intercepts αi’s can be thought of as the “effect” of being in state i, so the terms α1, α2, . . ., αn are
called entity fixed effects. It does not have a subscript t because it does not vary of time. How do we
interpret αi? It contains all state-specific characteristics that affect fatality rate but are not changing
over time (such as the local culture, political ideology, etc.).

What panel data allows us to do is the estimate the αi’s. This means that if we had panel data, we
are able to control for Culturei, as well as all other state-specific constant characteristics—even if those
characteristics are unobservable!

2.2 Estimation

In practice, how can we estimate a regression with entity-specific intercepts, as in the regression specified
in equation (2) above? We will discuss two potential approaches: first, using dummy variables, and
second, using the “entity-demeaned” or “within” transformation.

Dummy Variables. The state-specific intercepts in the fixed effects regression model can also be
expressed using binary variables to denote the individual states. Let DState1i be a binary variable that
equals one when i = 1 (i.e., for the state of Alabama), DState2i be a binary variable that equals one
when i = 2 (i.e., for the state of Arkansas), etc. The fixed effects regression in equation (2) can be
written equivalently as

FatalityRateit = β0 + β1BeerTaxit + γ2DState2i + γ3DState3i + . . .+ γ48DState48i + uit. (3)
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This procedure is also known as the Least Squares Dummy Variable (LSDV) method.

Note that because of the dummy variable trap, we cannot include the common intercept β0 and all 48
dummy variables in the regression. Hence, the state dummies that we included in the regression equation
above are only for State 2 to State 48 (i.e., we omitted the dummy variable for State 1). Equation (3)
can then be estimated using the usual OLS approach as we have learned before. That is, OLS would
choose β̂0, β̂1, γ̂2, γ̂3, . . ., γ̂n to minimize the sum of squared residuals:

n∑
i=1

T∑
i=1

(
Yit − β̂0 − β̂1BeerTaxit − γ̂2DState2i − . . .− γ̂48DState48i

)2
(4)

What is the relationship between equation (3) and equation (2)? In equation (2), we have n state-specific
intercepts, but in Equation (3), we have a common intercept β0 and n − 1 coefficients on the dummy
variables. In both equations, the slope for the effect of the beer tax, β1, is the same. Further, note that
α1 in equation (2) maps to β0 in equation (3), and α2 in equation (2) maps to β0 + γ2 in equation (3),
etc. Hence, equations (2) and (3) are equivalent. The variation in the state-specific intercepts αi’s and
the the coefficients of the dummy variables γi’s have the same source: the unobservable characteristics
(e.g., local culture) that differ across states but are constant over time.

Entity-Demeaned or Within Transformation. In the example we are using here, n is 48. But in
many panel data applications, the number of entities n is very large. When n is large, the OLS regression
with n− 1 dummy variables as in equation (3) can be very tedious. Econometrics software such as Stata
therefore use the “Entity-Demeaned” or “Within Transformation” for OLS estimation of fixed effects
regression models. This approach is equivalent to putting dummy variables for fixed effects, but it is
computationally faster because it employs some mathematical simplifications.

The Entity-Demeaned approach proceeds in two steps. In the first step, we “demean” Yit (i.e., the
variable FatalityRateit) and Xit (i.e., the variable BeerTaxit). Then, in the second step, we use OLS
on the demeaned variables.

Let’s now consider the first step. In regression equation (2), we can take the average of both sides of the
equation to obtain

FatalityRatei = β1BeerTaxi + αi + ui (5)

where FatalityRatei = 1
T

∑T
t=1 FatalityRateit is the entity mean (and similarly for BeerTaxi and ui).

If we subtract equation (5) from equation (2), we get

˜FatalityRateit = β1 ˜BeerTaxit + ũit (6)

where ˜FatalityRateit = FatalityRateit−FatalityRatei is the demeaned variable. Similarly for ˜BeerTaxit
and ũit are the demeaned variables.

In the second step, we can use OLS to estimate equation (6).

What have we just done? Note that by demeaning the variables in equation (6), the term αi dropped
out from the regression. This makes the coefficients of the sample regression easier to compute because
we do not have to calculate the value of αi for each entity i. This is especially helpful when we have a
large number of entities (think millions or billions). The punchline here is that by using the demeaned
regression, we are still able to control for the fixed effects αi without having to estimate these coefficients.

3 Regressions with Time Fixed Effects

In the previous section, we considered entity fixed effects that can control for characteristic that are
constant over time, but differ across entities. Now, we will look time fixed effects, which control for time
fixed effects that control for variables that are constant across entities, but change over time. One such
variable is national car safety standards. These safety standards change over time, but it is constant
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across states because it is a national standard.

For the moment, let’s ignore the effect of Culturei on traffic deaths to simplify the explanation. A time
fixed effects regression model takes the form

FatalityRateit = λt + β1BeerTaxit + uit (7)

In the entity fixed effects model, each state had its own intercept. We have a similar case here with
time fixed effects. Because λt varies over time but not over states, each time period has its own intercept.

How do we interpret the parameters λt? They can be thought of as the “effect” of year t on fatality
rates. The terms λ1, λ2, . . . , λT are know as time fixed effects. Time fixed effects would contain time
trends that influence traffic fatality rates, but are the same across states. Examples might include the
national unemployment rate, national gross domestic product, and other national, US-wide economic
trends.

As with the entity fixed effects model, we can use the LSDV and the within transformation (using the
time-period means) to estimate a time fixed effects model.

For the LSDV, let DY ear1t be a dummy variable equal to one for first year in the data (i.e., 1982), let
DY ear2t be a dummy variable equal to second year in the data (i.e., 1983), etc. The LSDV is then
expressed as

FatalityRateit = β0 + β1BeerTaxit + δ2DY ear2t + δ3DY ear3t + . . .+ δ7DY ear7t + uit (8)

As before, because a common intercept β0 is present in the regression, we do not include all seven year
dummies in the regression because of the dummy variable trap.

The main take-away here is that the time fixed effects regression model allows us to eliminate bias arising
from omitted variables like national safety standards that change over time but are the same across states
in a given year.

4 Regressions with both Entity and Time Fixed Effects

If some omitted variables are constant over time but vary across states (e.g., culture) while others are
constant across states but vary over time (e.g., national safety standards), then it is appropriate to in-
clude both entity and time fixed effects in the regression.

The combined entity and time fixed effects regression model is written as

FatalityRateit = β1BeerTaxit + αi + λt + uit (9)

where αi is the entity (i.e., state) fixed effect and λt is the time fixed effect. Because we have both state
and time fixed effects, we are controlling for both state-specific characteristics that do not change
over time (which are captured in αi) and factors that vary over time but not across entities
(which are captured in λt).

Again as in previous sections, we can use the LSDV and the within transformation to estimate the
model with both entity and time fixed effects. Note that for the within transformation, we would need
to demean the variables from both their entity and the time-period means.

How will the LSDV look like? It will be the same as before, but now we have to include dummy variable
for both entity and time. Hence, the specification would be

FatalityRateit = β0 + β1BeerTaxit

+ γ2DState2i + γ3DState3i + . . .+ γ48DState48i

+ δ2DY ear2t + δ3DY ear3t + . . .+ δ7DY ear7t + uit (10)
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where we again exclude the dummy variable for the first state as well as the dummy variable for the first
year in the data because of the dummy variable trap.

An important point to remember is that even if we included both entity and time fixed effects, these
fixed effects do not control for state-specific characteristics that vary over time, which can still be
a source of omitted variable bias. These omitted variables will be absorbed in the population regression
error uit. In our example, this could be state gross domestic product (GDP) per capita (a measure of
wealth, which varies over time across states). Note that state GDP per capita would be contained in
uit. For state GDP per capita to be cause omitted variable bias, we would need it to be correlated with
both the beer tax (which is possible if in richer states, the state government taxes many products to
fund social programs) and fatality rate (which is possible if in richer states, the state government spends
more money on better roads, etc.).

5 Fixed Effects Regression Assumptions

The fixed effects regression assumptions extend the least squares assumptions to panel data. Under these
assumptions, the fixed effects estimator is approximately normally distributed when n is large. To keep
the notation simple as possible, we focus on the entity fixed effects regression model (i.e., the regression
model without any time effects).

Consider the fixed effects regression

Yit = β1Xit + αi + uit, i = 1, . . . , n, t = 1, . . . , T

The four fixed effects regression assumptions are as follows.

1. E(uit|Xi1, Xi2, . . . , XiT , αi) = 0. This means that uit has conditional mean zero, given all values
of X for all time periods for a given entity. This assumption plays the same role that we have seen
before for cross-sectional data, namely, it is necessary for unbiasedness and implies that there is
no omitted variable bias. The key aspect to note here is that for a given entity i, the conditional
mean of uit does not depend on past, present, and future values of X. This assumption is violated
if, for example, the population error term in this period uit is correlated with the value of X in the
previous period, i.e., Xi,t−1.

2. (Xi1, Xi2, . . . , XiT , ui1, ui2, . . . , uit), i = 1, . . . , n are i.i.d draws from their joint distribution. This
means that the variables for one entity are distributed identically to, but independently of, the
variables for another entity. This assumption holds if entities are selected by simple random
sampling from the population.

3. (Xit, uit) have nonzero finite fourth moments. This means that large outliers are unlikely.

4. There is no perfect multicollinearity.

Why do we care about these assumptions? If they hold, then the fixed effects estimator is unbiased,
consistent, and normally distributed when n is large. Why do we like this? We like it because hypothesis
tests and confidence intervals can be computed using the usual method of using the normal distribution
(as well as the F distribution).

6 Serial Correlation

There is an important difference between the fixed effects regression assumptions vs. the least squares
assumptions (for cross-sectional data) that we have seen before. In the least squares assumptions, the
i.i.d assumptions required that each observation is independent (e.g., person 1’s X is independent of
person 2’s X). However, Assumption # 2 in panel data says something slightly different: it says that the
variables for one entity is independent of another entity, but within a given entity, there is no requirement
that the variables are independent.

Suppose that for a given state i, the beer tax in 1982 is correlated with the beer tax rate in 1983.
Similarly, the beer tax in 1983 may be correlated with the beer tax in 1984. This correlation over time
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may be because the state does not change the beer tax very often, so that if it is high in one year, it will
also tend to be high the next year too. When such a correlation is present, we say that the beer tax is
autocorrelated or serially correlated (i.e., it is correlated within itself, at different dates).

In a similar way, we can think of reasons why the population regression error uit might be correlated over
time. Recall that uit consists of time-varying factors that affect Y (fatality rate), but is not captured by
the X variables (beer tax, state and time fixed effects). What might be some factors that are contained
in uit? This could be factors like the quality of roads, which could also be correlated over time. The
basic intuition is that what happens in one year tends to be correlated with what happens the next year,
within a state: for example, a bad road that is not repaired this year will be in worse condition next
year. As a result the population errors uit will be serially correlated.

Why do we care about serial correlation? We care because if the population regression errors are
serially correlated, then the heteroskedasticity-robust standard errors are no longer valid because these
standard errors are obtained under the assumption of no serial correlation.

Standard errors that are valid if uit is potentially heteroskedastic and potentially serially correlated over
time within an entity are referred to as heterskedasticity and auto-correlation consistent (HAC)
standard erors. In the context of panel data, one type of HAC standard errors is clustered standard
errors. The term clustered comes from the fact that clustered standard errors allow for heteroskedastic-
ity and serial correlation within an entity, but at the same time, we assume that errors are uncorrelated
across clusters. Hence, clustered standard errors allow for hetorskedasticity and serial correlation in a
way that is consistent with the second fixed effects regression assumption.

Like heteroskedasticity-robust standard errors, clustered standard errors are valid regardless of whether
or not the true population regressions are heteroskedastic, serially correlated, or both. In Stata, we
implement clustered standard errors by using the cluster option in a regression.
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