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Abstract— In computer vision, an active vision source is a
sensor that explores its environment in an active way, deciding
to investigate parts of the environment in greater depth based on
what it currently sees. We study the problem of determining the
rate required to compress the output of an active vision source
to within a desired fidelity. In order to make the problem analyt-
ically tractable, we assume that the environment is memoryless
and gain insights into the distinction between compression of
passive and active sources. We show that modelling of the sources
is crucial by considering two extreme cases: adversarially active
sources and helpful active sources. The theory of arbitrarily
varying sources is useful for these purposes and we expand on it
by allowing the party controlling the variation in the source to
have partial or noisy observations of the environment. We give
several examples showing that there is a large difference in the
rate required to compress active sources that are adversarially
modelled and active sources that are jointly optimized with the
coding system. The results suggest that when active sources are
part of a networked system where rate comes at a premium, large
savings can be reaped by jointly optimizing the coding system
with the computer vision system.

I. I NTRODUCTION

Active vision/sensing/perception [1] is an approach to com-
puter vision, the main principle of which is that sensors should
choose to explore their environment activelybased on what
they currently sense or have previously sensed. As Bajcsy
states it in [1], “We do not just see, we look.” The contrast
between active and passive vision is easily understood through
examples. Consider a fixed security camera. This camera is
passive and does not have the ability to change position or
optically zoom in on different areas, it merely records. On the
other hand, consider a camera that has the ability to rotate
in several dimensions and can optically zoom. This active
camera can be operated autonomously using adaptive rules or
by a human to gain greater resolution of particular objects in
the environment, e.g. trespassers in a building or endangered
animals in the wild.

Active vision sources may also have noncausal knowledge
of the environment. For example, compare the recordings of a
cameraman filming a wild animal and a cameraman filming a
movie. When filming a wild animal, fairly little is predictable
and the focus of the camera is dependent almost entirely on
what has happened and what is currently happening. When
filming a movie, however, the cameraman has access to a
script and knows ahead of time which parts of the environment
are to be filmed. Noncausality can also be thought of as a
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Fig. 1. The problem of interest: lossy compression of an active source that
dynamically samples its environment.

way of abstracting the ability of the sensor to predict the
future based on previous observations. Even amongst causal
active sources, there is a distinction between causal and strictly
causal sources. This distinction is mostly related to the time-
scales on which the environment changes and the sensor can
actively sense and move. If the environment changes slowly
enough that knowledge of the immediate past allows for
prediction of the present (and actuation by the sensor within
the necessary time), it is as if the sensor knows the present.If
this is not true, however, there is intuitively a large difference
between the sensor knowing the past (strictly causal) and the
sensor knowing the present (causal).

In this paper, we are interested in the fixed-rate lossy
compression of an active vision source. Such a problem arises
when active sources are embedded in a networked system and
their rate requirements must be budgeted. In order to fully
understand this problem, there are many individual questions
that need to be answered. For example, we would need to know
the relevant distortion criteria for encoding of video. Also, how
should we model the plenoptic function [2] the active source
samples? For analytical tractability, we assume these issues are
dealt with and consider an admittedly oversimplified model
using known distortion measures, finite alphabets1, stationary,
memoryless environments and active agents that observe the
environment through a discrete memoryless channel (DMC).
Our basic question is the following: How does the rate-
distortion function change when a party can provide the coding
system with input based on noisy or partial knowledge of the
environment. Furthermore, we ask how important modelling
of this agent is in determining the rate-distortion function.

In general, the active vision source has an objective that

1The finite alphabet restriction is reasonable because most sensors have a
digital interface with the analog world. While the alphabetswould certainly
be unfathomably large, they are still finite.



Switch

Selection

Symbol

Generator

xm,1, xm,2, . . .

x1,1, x1,2, . . .

x2,1, x2,2, . . .

p(y|x1, . . . , xm)

· · ·

y1, y2, ..

x1, x2, ..

p(x1, .., xm)

Fig. 2. A simple model for an active source that observes the environment
noisily.

is based on purpose of the system it is a part of. From the
perspective of the coding system, the output of the active
source could be carefully modelled based on this objective
and the rules implemented by the agent controlling the source.
However, actually formulating such a model may be difficult,
and even after doing so, the rate-distortion function for such
a source may be unknown in a single-letter or otherwise
computable form. For these reasons, we focus on several
generic models for an active source: adversarial (worst-case),
helpful (joint optimization of coding and active vision systems)
and random (agnostic). The idea is that, regardless of the
modus operandi of the active source, the rate required to
compress its output will lie somewhere between the worst-
case and joint optimization scenarios. Our results along with
the examples show that it can be very useful to jointly optimize
the coding system with the active vision source.

We note that these issues are not confined to vision, but
can arise in other applications. For example, consider a field
of sensors taking measurements and an autonomously moving
agent that collects the samples and decides its path based
on samples it has already taken from the field. If there is
correlation in the sensor field, some degree of noncausality
may be induced on the active agent.

The paper is organized as follows. In Section II, we intro-
duce notation, the model of an active source and review a few
relevant results. In Section III, we determine the rate-distortion
function for adversarial active sources. In Section IV, we
study ‘helpful’ active sources and determine the rate-distortion
function in a special case. Some examples illustrating the gaps
between helpful and adversarial active sources are give in
Section V. We conclude in Section VI.

II. PROBLEM SETUP AND L ITERATURE REVIEW

A. Notation and Model

In this section, we set up the active vision source as a
special kind of arbitrarily varying source. LetX and X̂ be
finite source and reconstruction alphabets respectively. We will
let xn denote a lengthn vector(x1, . . . , xn) ∈ Xn. Similarly,
x̂

n denotes a vector from̂Xn. As needed,xk will denote the
first k letters in a vectorxn. Let d : X × X̂ → [0, d∗] be
a distortion measure for somed∗ < ∞. For n ≥ 1, let dn :

Xn × X̂n → [0, d∗] be the average distortiondn(xn, x̂n) =
1
n

∑n
k=1 d(xk, x̂k). Let P(X ) denote the set of distributions

(probability mass functions) onX , and letPn(X ) denote the
set of types for lengthn vectors inX . Let W be the set of
probability transition matrices (channels) fromX to X̂ . For
a p ∈ P(X ), we let Dmin(p) =

∑
x∈X p(x)minbx∈ bX d(x, x̂).

Dmin(p) is the minimum distortion achievable on average for
an IID source with distributionp. The rate-distortion function
for a distributionp at distortion2 D ≥ Dmin(p) is

R(p,D) = min
W∈W(p,D)

I(p,W ), (1)

where

W(p,D) =




W ∈ W :
∑

x,bx p(x)W (x̂|x)d(x, x̂) ≤ D




 (2)

andI(p,W ) is the mutual information

I(p,W ) =
∑

x,bx p(x)W (x̂|x) log2

W (x̂|x)∑
x′∈X p(x′)W (x̂|x′)

. (3)

Let B = {x̂n(1), . . . x̂n(M)} be a reconstruction code-
book with M elements from X̂n. Let d(xn;B) =
minbxn∈B dn(xn, x̂n) be the distortion betweenxn and the
codeword fromB that best represents it.

Figures 2 and 3 show two equivalent models for an active
source. At each time, the environment is modelled bym
correlated random variablesx1, . . . , xm that each take values
in X . The m random variables are referred to as subsources,
and are IID across time. Letxl,k denote the output of the
lth subsource at timek. We assume there is a known proba-
bility distribution on the subsources, so that for any timek,
P (x1,k = x1, . . . , xm,k = xm) = p(x1, . . . , xm).

The output of the active source at timek is determined
by a switch position,sk ∈ {1, . . . ,m}. With a slight abuse
of notation, let xk be the output of the active source at
time k, so thatxk = xsk,k. The agent, called a ‘switcher’,
chooses the switch positions based on observationsyk of
the environment seen through a discrete memoryless channel
p(yk|x1,k, . . . , xm,k) in Figure 2. When all distributions are
known, this model is equivalent (by Bayes’ rule) to the
one shown in Figure 3 where the switcher has access to a
memoryless statetk at each time, and the subsources output
the xl,k with conditional distributionp(x1, . . . , xm|t).

Let T be the finite set of states and let{pl(·|t)}
m
l=1 ⊂

P(X ) be the marginals of the conditional distribution
p(x1, . . . , xm|t). For eacht ∈ T , we let G(t) denote the
convex hull of{p1(·|t), . . . , pm(·|t)}. We let α(t) denote the
distribution on the statet, and note thatt1, t2, . . . is assumed
to be IID with distributionα.

In this paper, we focus on adversarial and helpful models
for the active source. Forn ≥ 1, D ≥ 0, we let

Madv(n,D) = min




|B| :
B ⊂ X̂n, E[dn(xn;B)] ≤ D

for all allowable
switcher strategies






2By convention,R(p, D) = ∞ for D < Dmin(p).
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Fig. 3. A model equivalent to that of Figure 2, where the activesource
observes a state for the environment.

and3

Mhelp(n,D) = min




|B| :
B ⊂ X̂n, E[dn(xn;B)] ≤ D

for some allowable
switcher strategy




 .

The expectations in the above definitions depend on the
switcher strategy and whether the agent is causal or noncausal,
but in general,E[dn(xn;B)] =

∑
xn P (xn)d(xn;B) where

P (xn) =
∑

sn,tn

[
n∏

k=1

α(tk)

]
P (sn,xn|tn). (4)

Above,P (sn,xn|tn) represents the switcher’s allowable strat-
egy. If the agent is restricted to use memoryless rules based
only on the current state, for example,P (sn,xn|tn) =∏n

k=1 Pk(sk|tk)psk
(xk|tk).

We define three classes of switchers. First, a strictly causal
switcher is allowed to choose the switch positionsk at timek
as a function ofxk−1

1 , . . . ,xk−1
m andt

k−1. A causal switcher
can choosesk as a function ofxk−1

1 , . . . ,xk−1
m and t

k.
Finally, a noncausal switcher can choosesk as a function
x

k−1
1 , . . . ,xk−1

m and t
n. We refer to the causal switcher as

having 1-step lookahead (as compared to the strictly causal
switcher) and the noncausal switcher as having full lookahead.

The measure of performance is the asymptotic rate needed
to compress the output of the active source to within a
distortionD according to the model. Hence, we define

Radv(D) = lim sup
n→∞

1

n
log2 Madv(n,D) (5)

and
Rhelp(D) = lim sup

n→∞

1

n
log2 Mhelp(n,D). (6)

B. Literature Review

Several special cases of the model in Section II-A have
already been studied in the literature. Most obviously, if
m = 1, switching is meaningless and we have the classic
rate-distortion problem for an IID source with distribution
p. Shannon [3] showed that for an IID sourceRadv(D) =
Rhelp(D) = R(p,D).

3By convention, if no suchB exists,M(n, D) = ∞ in these definitions.

For the strictly causal switcher, when the state is indepen-
dent (i.e. the state is useless to the agent for inferring anything
about the environment) of the subsource outputs, Berger [4]
showed that

Radv(D) = max
p∈G

R(p,D), (7)

where G is the convex hull of the distributions on the
subsources. In the context of active vision, a strictly causal
adversary pointing a camera is intuitively no more threatening
than a robot randomly pointing the camera when the scene
being captured is memoryless.

In [5], causal and noncausal adversaries are considered
when the state reveals the realizations of them subsources
noiselessly to the switcher. It was shown that if the switcher
has1-step lookahead (causal) or full lookahead (noncausal),

Radv(D) = max
p∈C

R(p,D), (8)

where

C =

{
p ∈ P(X ) :

p(·) =
∑

V⊂X ,1≤|V|≤m α(V)f(·|V)

f(·|V) ∈ P(V)

}
,

(9)
α(V) is the probability that{x1,k, . . . , xm,k} = V andP(V) is
the set of distributions onV. The fact that causal and noncausal
adversaries have the same rate-distortion function is a by-
product of the assumption that the environment is memoryless.
It was also shown by example thatRadv(D) can increase when
the switcher is allowed to be causal or noncausal as opposed
to strictly causal.

III. A DVERSARIAL ACTIVE SOURCES

For active sources modelled as in Section II-A, we have the
following theorem.

Theorem 1: For both causal and noncausal active sources,

Radv(D) = max
p∈D

R(p,D), (10)

where

D =

{
p ∈ P(X ) :

p(·) =
∑

t∈T α(t)f(·|t),
f(·|t) ∈ G(t) ∀ t ∈ T

}
.

Proof: (Outline) For the complete proof, see [6]. First,
for the converse part, letp ∈ D be a distribution that achieves
Radv(D) in equation (10). Upon observing a statetk at timek,
the switcher can set the switch positionsk randomly according
to the convex combination that yieldsf(·|tk). The switcher
needs only1-step lookahead to enact this strategy, and hence
it is also allowable if the switcher has full lookahead. To
the coding system, the output of the active source looks IID
with distributionp. Therefore, to code such a source to within
distortionD, it is required thatRadv(D) ≥ maxp∈D R(p,D).

For the direct part, we use the type covering lemma of [4]
and [7]. The type covering lemma states that ifp ∈ Pn(X )
for large enoughn, all vectors with typep can be covered
to within distortion D with at most exp2(n(R(p,D) + ǫ))
codewords. Since the number of types only grows polynomi-
ally with n, we can take a union of codebooks over types
within D without asymptotically affecting the rate. The rate



of this new codebook is dominated by the largest individual
codebook, the rate of which can be made arbitrarily close to
maxp∈D R(p,D) for large enoughn. Hence, we will have
covered all vectors with types inD, so we need only show
that the type of a vector output by the active source must lie
within (or very near)D with high probability. This can be
done by means of a martingale argument that can be found in
Lemma 2.1 of Appendix II in [6].

Note that when the agent can observe the environment
noiselessly, the setD equates directly with the setC of
equation (9). ComputingRadv(D) may be difficult because the
IID rate-distortion functionR(p,D) is generally not concave
in the distributionp. In [6], we give a ‘brute-force’ algorithm
to find Radv(D) to within some precisionǫ > 0.

IV. H ELPFUL ACTIVE SOURCES

For helpful active sources with1-step lookahead, we have
the following immediate lemma.

Lemma 1: If the active source has1-step lookahead,

Rhelp(D) ≤ min
p∈D

R(p,D). (11)

Proof: Again, if we letp be a distribution that achieves
the minimization in (11), the switcher can simulate the dis-
tribution f(·|t) upon observing a statet. The resulting output
of the active source looks to the coding system like an IID
source with distributionp.

In the special case that the source has full lookahead and
the state is exactly the output of them subsources, we can
characterize the rate-distortion function exactly as the IID rate-
distortion function for an associated source. Let

X ∗ = {V ⊆ X : 1 ≤ |V| ≤ m} (12)

and define a new distortion measureρ : X ∗ × X̂ → [0, d∗] by

ρ(V, x̂) = min
x∈X

d(x, x̂). (13)

Let Vk = {x1,k, . . . , xm,k} be the sequence of IID ‘observed
sets’ with distributionα(V) and let R∗(α,D) be the rate-
distortion function for the distributionα with respect to
distortion measureρ.

Theorem 2: If the active source observes the subsource
realizations noiselessly and has full lookahead,

Rhelp(D) = R∗(α,D). (14)
Proof: For any given codebookB, the helpful switcher

will try to output lettersx1, . . . , xn from V1, . . . ,Vn respec-
tively so thatdn(xn;B) is minimized. For any fixed̂xn in
the codebook, the minimal distortionxn sequence that can be
output by the active source is such that

dn(xn, x̂n) =
1

n

n∑

k=1

ρ(Vk, x̂k). (15)

Hence, we have by proper selection of the switch positions,

dn(xn;B) = minbxn∈B

1

n

n∑

k=1

ρn(Vk, x̂k). (16)
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Fig. 4. Two Bernoulli subsources, the agent controlling theactive source
observes the mod-2 sum of the two subsource outputs.

The problem of covering thexn vector to within distortionD
with respect tod(·, ·) is exactly the same as covering the sets
V1, . . . ,Vn to within distortionD with respect toρ(·, ·).

The strategy that achieves a rate ofR∗(α,D) requires the
active source to process the entire block and then select the
switch positions. This is not possible with1-step lookahead
(or if the active sensor does not have the computational
capabilities to process a long block of measurements), so for
causal agents, we have the following corollary.

Corollary 1: For causal switchers,

R∗(α,D) ≤ Rhelp(D) ≤ min
p∈D

R(p,D). (17)

In the next section, we give an example showing that
R∗(α,D) < minp∈D R(p,D) < maxp∈D R(p,D) in general.

V. EXAMPLES

To simply illustrate the results, we consider examples using
binary alphabetsX = X̂ = {0, 1} and Hamming distortion,
d(x, x̂) = 1(x 6= x̂). Recall that for an IID binary (Bernoulli)
source with a probability of1 equal top ∈ [0, 1/2],

R((1 − p, p),D) =

{
hb(p) − hb(D) D ∈ [0, p]

0 D > p
, (18)

wherehb(p) = −p log2 p − (1 − p) log2(1 − p) is the binary
entropy function. The examples considerm = 2 independent
Bernoulli subsources with a probability of1 equal to 1/4
and 1/3 for the first and second subsource respectively. For
the strictly causal adversary, the rate-distortion function is
Radv(D) = hb(1/3) − hb(D) for D ∈ [0, 1/3], as we know
from [4]. We know from [5] that if the adversary is causal or
noncausal and the observations are the noiseless realizations of
the subsources,Radv(D) = 1−hb(D) for D ∈ [0, 1/2]. Figure
4 shows an example where the mod-2 sum of the subsources
is observed by the switcher. By evaluating Theorem 1, we see
thatRadv(D) = hb(1/3)−hb(D) for D ∈ [0, 1/3]. Therefore,
observation of the mod-2 sum of the subsources does not allow
the adversarially active source to increase the rate-distortion
function above that of the strictly causal adversary.

Figure 5 shows an example where the agent observes
only the second subsource, but not the first. Again using
Theorem 1, we see that for the causal or noncausal active
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source,Radv(D) = 1 − hb(D). In this example, the rate-
distortion function is the same as if the agent had observed
both subsources.

Figure 6 shows an example where the second subsource is
observed by the switcher through a binary symmetric channel
with crossover probabilityδ ∈ [0, 1/2]. For the causal or
noncausal active source, ifδ ∈ [0, 2/5], it can be shown that

Radv(D) = hb

(
1

2
−

5δ

12

)
− hb(D),D ∈

[
0,

1

2
−

5

12
δ

]
.

(19)
For δ > 2/5, Radv(D) = hb(1/3) − hb(D) for D ∈ [0, 1/3]
as the observations are too noisy to increase the rate-distortion
function over the strictly causal case.

Now, if the active source in these examples observes both
subsources noiselessly, with1-step lookahead,Rhelp(D) ≤
hb(1/12)−hb(D) for D ∈ [0, 1/12] by Lemma 1. If the active
source has full lookahead, we can computeRhelp(D) from
Theorem 2 using the Arimoto-Blahut algorithm [8]. All these
rate-distortion functions are plotted for comparison in Figure
7. The plot shows that there is a large difference between
the rate-distortion functions for adversarial active sources and
their helpful counterparts. When the agent is allowed to see
the subsources noiseless for these examples, we have the strict
inequalityR∗(α,D) < minp∈D R(p,D) < maxp∈D R(p,D).

VI. CONCLUDING REMARKS

In order to truly understand lossy compression of active
sources, there are several major issues that further need tobe
dealt with. Most obviously, subsources with memory should
be studied. When the subsources have memory, causality will
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Fig. 7. Comparison of rate-distortion functions for variousexamples. There
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likely affect the rate distortion function in a much more
gradual way.

Another important consideration is whether the active vision
source is part of a closed-loop control system or not. If it
is, delay becomes a critical issue and it may be worthwhile
to study the problem within the framework of causal source
coding [9].

Finally, we have shown that large savings in rate can be
had by jointly optimizing the coding system with the active
vision system. To some extent, these savings are artificial as
they completely disregard the objective of the active vision
system. However, the question of how to jointly optimize
the two systems while maintaining some adequate level of
performance within each is a worthwhile one and could lead
to an interesting tradeoff involving mismatched distortion
measures.
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