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Abstract— In computer vision, an active vision source is a
sensor that explores its environment in an active way, deciding

to investigate parts of the environment in greater depth based on Active Coding | Rate
what it currently sees. We study the problem of determining the ™ system > Network
rate required to compress the output of an active vision source Source

to within a desired fidelity. In order to make the problem analyt-
ically tractable, we assume that the environment is memoryless
and gain insights into the distinction between compression of
passive and active sources. We show that modelling of the sousce
is crucial by considering two extreme cases: adversarially active
sources and helpful active sources. The theory of arbitrarily
varying sources is useful for these purposes and we expand on it
by allowing the party controlling the variation in the source to
have partial or noisy observations of the environment. We give way of abstracting the ability of the sensor to predict the
several examples showing that there is a large difference in the future based on previous observations. Even amongst causal
rat% rﬁqgiredd to compress aCtti;]’et sour_ce_stlthat ae addverjsiﬁritzally active sources, there is a distinction between causal aictiyst
modelled and active sources that are jointly optimized wi e g i :
coding system. The results suggest that when active sourcesear causal Sourcgs. This dISFmCtlon is mosly related to thee-i

part of a networked system where rate comes at a premium, large scales on which the environment changes and the sensor can
savings can be reaped by jointly optimizing the coding system actively sense and move. If the environment changes slowly
with the computer vision system. enough that knowledge of the immediate past allows for
prediction of the present (and actuation by the sensor mithi

] o ) ) ) the necessary time), it is as if the sensor knows the prelent.
Active vision/sensing/perception [1] is an approach to €0mjs s not true, however, there is intuitively a large diéfece

puter vision, the main principle of which is that sensorstio peqyeen the sensor knowing the past (strictly causal) aed th
choose to explore their environment activédgsed on what  gansor knowing the present (causal).

they currently sense or have previously sensed. As Bajcsy | this paper, we are interested in the fixed-rate lossy

states it in [1], “We do not just see, we look.” The contragiympression of an active vision source. Such a problemsarise
between active and passive vision is easily understood@ro hen active sources are embedded in a networked system and
examples. Consider a fixed security camera. This cameray{ir rate requirements must be budgeted. In order to fully
passive and does not have the ability to change position Qfyerstand this problem, there are many individual questio
optically zoom in on different areas, it merely records. @@ t y,5¢ heed to be answered. For example, we would need to know
other hand, consider a camera that has the ability t0 rotg{g rejevant distortion criteria for encoding of video. &low

in several dimensions and can optically zoom. This acti,qy1d we model the plenoptic function [2] the active source
camera can be op_erated autonomo.usly usmg.adaptlve. rU|e§é’rhples? For analytical tractability, we assume thesessate

by a human to gain greater resolution of particular objeets et with and consider an admittedly oversimplified model
the environment, e.g. trespassers in a building or endadgeﬂsing known distortion measures, finite alphahestationary,

a”'m?'s mlthe wild. memoryless environments and active agents that observe the
Active vision sources may also have noncausal knowledggironment through a discrete memoryless channel (DMC).

of the environment. For example, compare the recordings oty pasic question is the following: How does the rate-
cameraman filming a wild animal and a cameraman filming @i rtion function change when a party can provide thermdi
movie. When filming a wild an_lmal, fairly little is predlct_aéal system with input based on noisy or partial knowledge of the
and the focus of the camera is dependent almost entirely g8 ironment. Furthermore, we ask how important modelling
what has happened and what is currently happening. Wheiyis agent is in determining the rate-distortion funatio
filming & movie, however, the cameraman has access 10 §n general, the active vision source has an objective that
script and knows ahead of time which parts of the environment
are to be filmed. Noncausality can also be thought of as @Tthe finite alphabet restriction is reasonable because masbsehave a

digital interface with the analog world. While the alphabeitsuld certainly
This work was supported by a NSF Graduate Research Fellpwshi be unfathomably large, they are still finite.

Fig. 1. The problem of interest: lossy compression of an activurce that
dynamically samples its environment.

I. INTRODUCTION



g Tie.. X" x X" — [0,d*] be the average distortiod, (x”,X") =
LS d(zk, Zr). Let P(X) denote the set of distributions

Symbol . !
Geﬁ:r;m 21,322, 4 o1 aa (probability mass functions) o&’, and letP,,(X’) denote the
— = set of types for lengt vectors int’. Let W be the set of
p(@1, - 2m) probability transition matrices (channels) frod to X'. For

Tl T2, - ap e P(X), we let Dyin(p) = > cx P( )mlnAGX d(z, 7).
Dnin(p) is the minimum distortion achievable on average for

r 1 | swith an 11D source with distributiop. The rate-distortion function
Pyl ..., @m) Selection for a distributionp at distortiod D > D, (p) is
R(p,D)= min I(p,W), 1
(p, D) wonn (. W) @D

Fig. 2. A simple model for an active source that observes th@a@mment where
noisily.

W(p,D) =W eW:> p@)W(@lz)d(x,2) <Dy (2)

CEI

is based on purpose of the system it is a part of. From the
perspective of the coding system, the output of the actiemd(p, W) is the mutual information

source could be carefully modelled based on this objective W (3|x)

and the rules implemented by the agent controlling the sourc I (p, W ZP W (z|z)log, e &
However, actually formulating such a model may be difficult, 2arex D)W (Z]2")

and even after doing so, the rate-distortion function fahsu et B = {x (1),...X"(M)} be a reconstruction code-

a source may be unknown in a single-letter or otherwisgyok with M elements from X". Let d(x";B) =
computable form. For these reasons, we focus on sevegal,., e dn(x",X") be the distortion betweewr” and the
generic models for an active source: adversarial (worsé)ca codeword fromB that best represents it.
helpful (joint optimization of coding and active vision $g81s)  Figures 2 and 3 show two equivalent models for an active
and random (agnostic). The idea is that, regardless of t§6urce. At each time, the environment is modelled rhy
modus operandi of the active source, the rate required torrelated random variables, ..., z,, that each take values
compress its output will lie somewhere between the worsir x. The m random variables are referred to as subsources,
case and joint optimization scenarios. Our results alort@ wignd are 1ID across time. Let; , denote the output of the
the examples show that it can be very useful to jointly optémi j» subsource at tim&. We assume there is a known proba-
the coding system with the active vision source. bility distribution on the subsources, so that for any tile
We note that these issues are not confined to vision, tp(g;l’k =21, Tk = Tm) = P(T1, ..., T ).
can arise in other applications. For example, consider d fiel The output of the active source at tinkeis determined
of sensors taking measurements and an autonomously mowjda switch position,s, € {1,...,m}. With a slight abuse
agent that collects the samples and decides its path bagechotation, letz;, be the output of the active source at
on samples it has already taken from the field. If there tfne k, so thatz, = T4, k- The agent, called a ‘switcher’,
correlation in the sensor field, some degree of noncausaliijooses the switch positions based on observatipnof
may be induced on the active agent. the environment seen through a discrete memoryless channel
The paper is organized as follows. In Section II, we intrQy(yy |z, 1.,...,x,, 1) in Figure 2. When all distributions are
duce notation, the model of an active source and review a f@Wown, this model is equivalent (by Bayes’ rule) to the
relevant results. In Section Ill, we determine the rateéedi®on one shown in Figure 3 where the switcher has access to a
function for adversarial active sources. In Section IV, wmhemoryless state, at each time, and the subsources output
study ‘helpful’ active sources and determine the rateedigtn  the ;1. with conditional distributionp(x1, . . ., z,,[t).
function in a special case. Some examples illustrating #psg  Let 7 be the finite set of states and I€p;(-[t)}, C
between helpful and adversarial active sources are givemiX) be the marginals of the conditional distribution
Section V. We conclude in Section VI. p(x1,...,zy|t). For eacht € 7, we let G(¢) denote the
convex hull of {p;(:|t),...,pm(:|t)}. We leta(t) denote the
distribution on the state, and note thaty, -, ... is assumed
A. Notation and Model to be IID with distributionc.
In this section, we set up the active vision source as aln this paper, we focus on adversarial and helpful models
special kind of arbitrarily varying source. Leét and X be for the active source. Fat > 1, D > 0, we let

Il. PROBLEM SETUP AND LITERATURE REVIEW

finite source and reconstruction alphabets respectivedywiV BcC A" E[d,(x"; B)] < D
letx" denote a length vector (zy, ..., z,) € X™. Similarly,  yredv(, py — yin {15 : for all allowable
X" denotes a vector fror’”. As neededx” will denote the switcher strategies

first k letters in a vectorx™. Letd : X x X — [0,d*] be
a distortion measure for som& < oo. Forn > 1, let d,, : 2By convention,R(p, D) = oo for D < Duin(p).



211,210, .. For the strictly causal switcher, when the state is indepen-
Symbol dent (i.e. the state is useless to the agent for inferringhamy
State 21,222, 4 ,A about the environment) of the subsource outputs, Berger [4]
t1,t2,..|  Generator 1, T2,
Generator o A o showed that d
pEL, - wmlt) R" U(D) :mach(va)a (7)
Tl T2y - - s peEG
where G is the convex hull of the distributions on the
_ | switch subsources. In the context of active vision, a strictly eaus
| selection adversary pointing a camera is intuitively no more threagn
- than a robot randomly pointing the camera when the scene
being captured is memoryless.
Fig. 3. A model equivalent to that of Figure 2, where the acteerce In [5], causal and noncausal adversaries are considered
observes a state for the environment. when the state reveals the realizations of thesubsources
noiselessly to the switcher. It was shown that if the switche
and has1-step lookahead (causal) or full lookahead (noncausal),
BC X", Eld,(x";B)] < D R*"(D) = max R(p, D), (8)
M"!P(n, D) = min < |B] : for some allowable where
switcher strategy
The expectations in the above definitions depend on the = {p €PX): = 21}??{5;6]}7;&0;0))“ v }’
switcher strategy and whether the agent is causal or noakaus (9)

but in generalE[d, (x"; B)] = >, P(x")d(x"; B) where (V) is the probability tha{xz, 1, ..., zm .} = V andP(V) is
n the set of distributions oW. The fact that causal and noncausal
P(x") = Z Ha(tk) P(s™, x"[t"). (4) adversaries have the same rate-distortion function is a by-
s tn kel product of the assumption that the environment is memasyles
dv H
Above, P(s", x"[t") represents the switcher’s allowable strati—t}wiivﬂsﬁesrr}g’\g:lgxeeé(a,:(r)nElee ;{:ﬁial(f)) r) ﬁgg{;gﬁgﬁ;ﬁgﬁgse q
egy. If the agent is restricted to use memoryless rules baﬁggstrictl causal
only on the current state, for examplé(s™,x"|t") = y '
[Tizy Pe(sklte)ps, (wxltr). IIl. ADVERSARIAL ACTIVE SOURCES
We define three classes of switchers. First, a strictly dausapggy active sources modelled as in Section II-A. we have the
switcher is allowed to choose the switch positignat time & following theorem.

as a function ofc;~,...,x};~" andt"~!. A causal switcher  Theorem 1: For both causal and noncausal active sources,
can chooses; as a function ofx*~! ... xk~1 and t*.
Finally, a noncausal switcher can choose as a function R*"(D) = max R(p, D), (10)
xk=1 . xk=1 andt”. We refer to the causal switcher as :
having 1-step lookahead (as compared to the strictly caus¥ere
switcher) and the noncausal switcher as having full lookdhe D=IpeP): p() = ng a(t)f(-|t), }

The measure of performance is the asymptotic rate needed O f(H)egGt)vVteT

to compress the output of the active source to within a Proof: (Outline) For the complete proof, see [6]. First,
R (D) in equation (10). Upon observing a stageat timek,

R (D) = limsup 1 log, M (n, D) (5) the switcher can set the switch positignrandomly according
n—oco T to the convex combination that yield§:|¢;). The switcher
and i needs onlyl-step lookahead to enact this strategy, and hence
RM"P(D) = limsup — logy M"'(n, D). (6) it is also allowable if the switcher has full lookahead. To
n—oco N the coding system, the output of the active source looks IID
B. Literature Review with distributionp. Therefore, to code such a source to within

Several special cases of the model in Section II-A hagistortionD, itis required that?*®(D) > max,ep R(p, D).
already been studied in the literature. Most obviously, if FOr the direct part, we use the type covering lemma of [4]
m = 1, switching is meaningless and we have the classid [7]. The type covering lemma states thapit P, ()
rate-distortion problem for an 1ID source with distributio fOr large enoughv, all vectors with typep can be covered

p. Shannon [3] showed that for an IID sourdgd’(D) = 1O within distortion D with at mostexp,(n(R(p, D) + €))
R'"»(D) = R(p, D). codewords. Since the number of types only grows polynomi-

ally with n, we can take a union of codebooks over types
3By convention, if no suchB exists, M (n, D) = oo in these definitions. within D without asymptotically affecting the rate. The rate



of this new codebook is dominated by the largest individual

codebook, the rate of which can be made arbitrarily close to B(1/4) BE—

max,ep R(p, D) for large enoughn. Hence, we will have T1T2, -
covered all vectors with types i, so we need only show )

that the type of a vector output by the active source must lie B(1/3) A

within (or very near)D with high probability. This can be Y Swiitch

done by means of a martingale argument that can be found in (D Selection| 51,53, . . .

Lemma 2.1 of Appendix Il in [6]. [ ]

Note that when the agent can observe the environment
noiselessly, the seD equates directly with the sef of Fig. 4. Two Bernoulli subsources, the agent controlling #lotive source
equation (9). Computin@“d” (D) may be difficult because the observes the mod-sum of the two subsource outputs.
IID rate-distortion functionR(p, D) is generally not concave
in the distributionp. In [6], we give a ‘brute-force’ algorithm

to find Re4*(D) to within some precision > 0. The problem of covering the” vector to within distortionD

with respect tai(-, -) is exactly the same as covering the sets
IV. HELPFUL ACTIVE SOURCES Vi, ..., V, to within distortion D with respect top(-,-). ®

For helpful'actlve sources witl-step lookahead, we have The strategy that achieves a rate if
the following immediate lemma.
Lemma 1: If the active source has-step lookahead,

(o, D) requires the

active source to process the entire block and then select the

switch positions. This is not possible withstep lookahead

RhelP(D) SI%%R(Y” D). (11) (or if the active sensor does not have the computational
p

Proof: Again, if we letp be a distribution that achievescapabmtles to process a long bloc.k of measurements), iso fo
causal agents, we have the following corollary.

the minimization in (11), the switcher can simulate the dis- I _ | switch

tribution f(-|t) upon observing a state The resulting output Corollary 1. For causal switchers,

of the active source looks to the coding system like an 11D R*(av, D) < R""(D) < min R(p, D) (17)
’ - ~ peD ’ '

source with distributiorp. ] ; ] }
In the next section, we give an example showing that

In the special case that the source has full lookahead aRé(«, D) < min,cp R(p, D) < max,ep R(p, D) in general.
the state is exactly the output of the subsources, we can
characterize the rate-distortion function exactly as tBerate- V. EXAMPLES

distortion function for an associated source. Let
To simply illustrate the results, we consider examplesgisin
Xr={yCcx:1<[V[<m} (12) binary alphabetst = X = {0,1} and Hamming distortion,
and define a new distortion measyre X* x X — [0, d*] by d(z, ) :_l(x # ). Rggall that for an 11D binary (Bernoulli)
source with a probability of equal top € [0,1/2],
p(V,Z) = mind(z, Z). (13)
reX R((l . ) D) _ { hb(p) - hb(D) D e [0,]?] (18)
Let Vi, = {z14,...,2m i} be the sequence of IID ‘observed p.p)E) = 0 D>p ~’
sets’ with distributiona(V) and let R*(«, D) be the rate- ) )
distortion function for the distributionn with respect to Wherehs(p) = —plogyp — (1 —p)log,(1 —p) is the binary
distortion measurg. entropy functlon. The exgmples cons_lqﬁr: 2 independent
Theorem 2: If the active source observes the subsourdaernoulli subsources with a probability df equal to1/4
realizations noiselessly and has full lookahead, and 1/3 for the first and second subsource respectively. For

the strictly causal adversary, the rate-distortion fuorctis

R""(D) = R*(a, D). (14) R*¥(D) = hy(1/3) — hy(D) for D € [0,1/3], as we know
Proof: For any given codebooB, the helpful switcher from [4]. We know from [5] that if the adversary is causal or
will try to output lettersz,, ...z, from Vi,...,V, respec- noncausal and the observations are the noiseless reatigati

tively so thatd, (x"; B) is minimized. For any fixedk” in  the subsources?*’ (D) = 1—hy(D) for D € [0,1/2]. Figure
the codebook, the minimal distortiod® sequence that can be4 shows an example where the mod-2 sum of the subsources

output by the active source is such that is observed by the switcher. By evaluating Theorem 1, we see
L that R4 (D) = hy(1/3) —hy(D) for D € [0,1/3]. Therefore,

dp(x™",X") = — Z p(Vr, z%). (15) observation of the mod-2 sum of the subsources does not allow
"= the adversarially active source to increase the rate+tito

Hence, we have by proper selection of the switch positiongfunction above that of the strictly causal adversary.
n Figure 5 shows an example where the agent observes

d,,(x"; B) = min lan(Vk,fk)- (16) only the second subsource, but not the first. Again using
xneBn  — Theorem 1, we see that for the causal or noncausal active



R(D) for Bernoulli 1/3 and 1/4 example
8(1/4) £1,1,%1,2,%1,35 - - 1‘ ; . ‘ i
/‘ == Adversary t = X,
T2 0.9kt - Adversary, strictly causal or causal t = X +x, mod 2 H
A A RITHY Optimistic random, R(D) = h_(1/4) - h (D)
T2.1,%2,2,%2.3, - -, 0.8F . . b b
B(1/3) * * * OL\Y Helpful, noiseless 1-step lookahead upper bound
B ‘,‘ == Helpful, noiseless with full lookahead
bt Switch 0.7r K )
" selection| s1,s2, - - 7065 i
=
=
90.5* B
. . S . ©
Fig. 5. Two Bernoulli subsources, the second of which is plesenoiselessly @£0.4( R
by the agent controlling the active source.
0.3 b
B(1/4) T1,1,%1,2,%1,3,- -, 02r i
T1,T2, ... 0.1f ) 4
> ~’./.r
A 0 S imien
B(l/d) R 2.1,%2,2,%2.3, - - : 0 04 0.5

Switch
Selection| s1,s2, ...

Fig. 7. Comparison of rate-distortion functions for vari@xamples. There
is a large gap between helpful active sources and advdraatige sources.

Fig. 6.  Two Bernoulli subsources with parameter$4 and 1/3. The . . . . .
1/3 source is observed through a binary symmetric channel witesoraer “kely affect the rate distortion function in a much more

probability § € [0,1/2]. gradual way.
Another important consideration is whether the activeovisi
source is part of a closed-loop control system or not. If it
source, R (D) = 1 — hy(D). In this example, the rate- s, delay becomes a critical issue and it may be worthwhile
distortion function is the same as if the agent had observgflstudy the problem within the framework of causal source
both subsources. coding [9].

Figure 6 shows an example where the second subsource iginally, we have shown that large savings in rate can be
observed by the switcher through a binary symmetric channgld by jointly optimizing the coding system with the active
with crossover probabilityy € [0,1/2]. For the causal or vision system. To some extent, these savings are artifisial a
noncausal active source, dfe [0,2/5], it can be shown that they completely disregard the objective of the active visio

J 1 5§ 1 5 system. However, the question of how to jointly optimize

R*Y(D) = hy (2 - 12) —hy(D), D € {0» 3~ 125} - the two systems while maintaining some adequate level of

(19) performance within each is a worthwhile one and could lead
For & > 2/5, R*" (D) = hy(1/3) — hy(D) for D € [0,1/3] to an interesting tradeoff involving mismatched distantio
as the observations are too noisy to increase the ratetitigto Measures.
function over the strictly causal case.
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