Anomalous Hall effect in twisted bilayer graphene

Shubhayu Chatterjee University of California, Berkeley

Sachdev Group Meeting March 1, 2019

In collaboration with:

Nick Bultinck UC Berkeley

Michael P. Zaletel UC Berkeley

N. Bultinck, SC and M. P. Zaletel

arXiv:1901.08110

Twisted bilayer graphene

- Bilayer graphene with a relative twist angle $\boldsymbol{\theta}$
- Nearly flat bands close to the *magic angle* $\theta \sim 1.09^{\circ}$

y

AB

BA

AA

A2

A1

B2
B1

Bistritzer, MacDonald, PNAS 2011

Figure: Koshino et al, PRX 2018

Twisted bilayer graphene

- 8 active low-energy bands (2 layer, 2 valley, 2 spin)
- Inversion C_{2z} and time-reversal T protects Dirac cones Po et al, PRX 2018
- Dirac cones within the same valley have identical chirality

Twisted bilayer graphene

- Correlated insulators at integer fillings of Moire unit cells
- Superconductivity on doping away from these insulators

Cao et al Nature², 2018 Yankowitz et al, Science 2018 Efetov et al, KITP talk, 2019

Outline

- Observation of anomalous Hall effect
- Chern bands and valley Zeeman effect
- Metal-insulator competition
- Fate of the inter-valley coherent/excitonic phase
- Conclusions and open questions

Outline

- Observation of anomalous Hall effect
- Chern bands and valley Zeeman effect
- Metal-insulator competition
- Fate of the inter-valley coherent/excitonic phase
- Conclusions and open questions

- Insulator at charge neutrality (v = 0) Dirac cones gapped out!
- Large resistance at v = 3 (but not exactly insulating)

- Insulator at charge neutrality (v = 0) Dirac cones gapped out!
- Large resistance at v = 3 (but not exactly insulating)

- Insulator at charge neutrality (v = 0) Dirac cones gapped out!
- Large resistance at v = 3 (but not exactly insulating)

- Insulator at charge neutrality (v = 0) Dirac cones gapped out!
- Large resistance at v = 3 (but not exactly insulating)

- Insulator at charge neutrality (v = 0) Dirac cones gapped out!
- Large resistance at v = 3 (but not exactly insulating)

- Large anomalous Hall effect at v = 3 (out of 4 conduction bands), not quite quantized with $\sigma_{xy} \sim 0.5 \text{ e}^2/\text{h}$
- Hysteresis loop in presence of a coercive magnetic field
- Signatures of chiral edges from non-local resistance (?)

- *Key feature of the device*: One graphene layer is very closely aligned with hexagonal Boron Nitride (h-BN) substrate
- Effects of h-BN
- 1. Broken inversion (C_{2z}) symmetry (Dirac cones get gapped)
- 2. Additional Moire potential (weaker than the original one)
- Hypothesis: Gapped bands can have Chern numbers +C for valley K and -C for valley K'
- Interaction-driven valley polarization \rightarrow anomalous Hall effect.
- Full valley + spin polarization can cause quantized anomalous Hall conductance

At
$$\nu = 3 : (K,\uparrow), (K,\downarrow), (K',\uparrow)$$

Outline

- Observation of anomalous Hall effect
- Chern bands and valley Zeeman effect
- Metal-insulator competition
- Fate of the inter-valley coherent/excitonic phase
- Conclusions and open questions

Chern bands and Valley Zeeman effect

- Band structure calculations using monolayer free-electron bands coupled via interlayer tunneling
- Added sublattice potential + phenomenological lattice relaxation

Chern bands and Valley Zeeman effect

- Generically, topologically non-trivial bands in large parts of the phase diagram
- $C = \pm 1$ for valleys related by time-reversal symmetry
- Large valley Zeeman effect due to orbital magnetic moment, $g_v = -2$ to -6
- Chern bands + spontaneous polarization + valley Zeeman lead to anomalous Hall effect and hysteresis in R_{xy}

Outline

- Observation of anomalous Hall effect
- Chern bands and valley Zeeman effect
- Metal-insulator competition
- Fate of the inter-valley coherent/excitonic phase
- Conclusions and open questions

Metal insulator competition

• Toy model: Two bands with opposite Chern numbers ± 1 described by dispersive lowest Landau levels, with screened isotropic Coulomb interaction u_0

$$H = H_p + H_{int}$$

$$H_p = \sum_{\mathbf{k},\tau=\pm} \varepsilon_{\mathbf{k}} \ c_{\mathbf{k},\tau}^{\dagger} c_{\mathbf{k},\tau}$$

$$H_{int} = \frac{1}{2N_{\phi}} \sum_{\mathbf{q},\tau,\tau'} V_{\tau,\tau'}(\mathbf{q}) : n_{\tau}(\mathbf{q}) n_{\tau'}(-\mathbf{q}) :$$
Screened Coulomb

• Metal \rightarrow Valley polarized metal \rightarrow Valley polarized insulator transition at half-filling when W/u₀ is tuned

Metal insulator competition

- Toy model: Two bands with opposite Chern numbers ± 1 described by dispersive lowest Landau levels, with screened isotropic Coulomb interaction u_0
- Metal \rightarrow Valley polarized metal \rightarrow Valley polarized insulator transition at half-filling when W/u₀ is tuned
- Anomalous Hall effect if valleypolarization is non-zero, quantized if fully valley + spin polarized

Valley polarized insulator

Valley polarized metal

Unpolarized metal

Outline

- Observation of anomalous Hall effect
- Chern bands and valley Zeeman effect
- Metal-insulator competition
- Fate of the inter-valley coherent/excitonic phase
- Conclusions and open questions

• In bilayer quantum hall systems, inter-layer coherence (also called exciton condensate) is preferred in presence of small interaction anisotropy between layers

$$|\psi\rangle \sim \prod_{\mathbf{k}} \frac{1}{\sqrt{2}} (c_{\mathbf{k},+}^{\dagger} + c_{\mathbf{k},-}^{\dagger}) |0\rangle \left| \Delta_{\mathbf{k}} = \langle c_{\mathbf{k},+}^{\dagger} c_{\mathbf{k},-} \rangle \neq 0 \right|$$

DGG RHDGG RH

- What is the fate of an analogous inter-valley coherent state?
- IVC state not break time-reversal symmetry → should show no Hall effect at zero field

• In bilayer quantum hall systems, inter-layer coherence (also called exciton condensate) is preferred in presence of small interaction anisotropy between layers

$$|\psi\rangle \sim \prod_{\mathbf{k}} \frac{1}{\sqrt{2}} (c_{\mathbf{k},+}^{\dagger} + c_{\mathbf{k},-}^{\dagger}) |0\rangle \left[\Delta_{\mathbf{k}} = \langle c_{\mathbf{k},+}^{\dagger} c_{\mathbf{k},-} \rangle \neq 0 \right]$$

DGG RHDGG RH

- What is the fate of an analogous inter-valley coherent state?
- IVC state not break time-reversal symmetry → should show no Hall effect at zero field
- Twist in the story: The two valleys have opposite Chern numbers

- Lack of IVC: Real space picture
- Electrons moving in Landau levels with opposite Chern numbers see opposite magnetic fields
- The IVC order parameter $\Delta(\mathbf{r})$ therefore behaves as a superconducting order parameter in a uniform magnetic field
- The flux must penetrate (no Meissner effect allowed)
- Vortices in $\Delta(\mathbf{r})$ lower correlation energy gain

- Lack of IVC: Momentum space picture
- Recall: $\Delta_{\mathbf{k}} = \langle c_{\mathbf{k},+}^{\dagger} c_{\mathbf{k},-} \rangle$
- The phases of the electron creation operators in \pm valleys wind around the BZ by $\pm 2\pi$
- Phase of Δ_k must wind by 4π around the BZ \rightarrow Nodes in Δ_k lower correlation energy gain

- Lack of IVC: Momentum space picture
- Recall: $\Delta_{\mathbf{k}} = \langle c_{\mathbf{k},+}^{\dagger} c_{\mathbf{k},-} \rangle$
- The phases of the electron creation operators in \pm valleys wind around the BZ by $\pm 2\pi$
- Phase of Δ_k must wind by 4π around the BZ \rightarrow Nodes in Δ_k lower correlation energy gain

$$V(\mathbf{q}) = u_0(\mathbf{q}) \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + u_1(\mathbf{q}) \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

$$e^{HF}(P_v = 1, \Delta_0) - e^{HF}(P_v = 1, 0) \propto \int_{\mathbf{k}, \mathbf{q}} u_0(\mathbf{q}) |\Delta_+ - \Delta_-|^2 + \int_{\mathbf{k}, \mathbf{q}} u_+(\mathbf{q}) |\Delta_+ + \Delta_-|^2 - 4u_1(\mathbf{0}) \int_{\mathbf{k}} |\Delta_{\mathbf{k}}|^2$$

$$\Delta_{\pm} = \Delta_{\mathbf{k} \pm \mathbf{q}/2}$$

- Lack of IVC: Symmetry argument
- Valley Chern bands with opposite Chern numbers do not have SU(2) valley rotation symmetry
- Valley polarized state breaks a discrete (time-reversal) symmetry and is gapped
- Therefore must be stable to small perturbations
- A novel excitonic vortex lattice phase is possible at large anisotropy

• Lack of IVC at low interaction anisotropy; excitonic vortex lattice phase is possible when anisotropy is cranked up.

- (A) Valley-polarized insulator (B) Exciton vortex lattice
- (C) Partially polarized metal (D) Unpolarized metal

Outline

- Observation of anomalous Hall effect
- Chern bands and valley Zeeman effect
- Metal-insulator competition
- Fate of the inter-valley coherent/excitonic phase
- Conclusions and open questions

Conclusions and open questions

- Twisted bilayer graphene *aligned* with hexagonal Boron Nitride (h-BN) substrate can host non-trivial Chern bands
- Interaction-driven valley polarization → anomalous Hall effect
- Full valley + spin polarization can cause quantized anomalous Hall conductance
- The hysteresis loop in R_{xy} and its sign can be explained by a large valley Zeeman effect
- The valley polarized state is stable to inter-valley coherence due to topological features of the band structure

Conclusions and open questions

- Nature of the insulator at v = 2? (Also need to consider spin degrees of freedom)
- Puzzling transport behavior: Gap increases with perpendicular magnetic field and then decreases, while it decreases in an inplane field quadratically. Why?

 Sharpe et al, arXiv:1901.03520 Yankowitz et al, Science 2018
- What about Landau fans seen in quantum oscillations?
- Phenomenology of the exciton vortex lattice phase? Signatures in spectroscopic or transport probes?

Related work: Y. Zhang, D. Mao, T. Senthil, arXiv:1901.08209, M. Xie, A. Macdonald, arXiv:1812.04213, Y. Lin, R. Nandkishore, arXiv:1901.00500

Thank you for your attention!

