Quantum fluctuating antiferromagnetism in insulators and metals:

Intertwining topological order with discrete broken symmetries

Shubhayu Chatterjee Harvard University

Harvard CMT Kids Seminar September 12, 2017

In collaboration with:

Mathias Scheurer, Harvard University

Subir Sachdev, Harvard/Perimeter

- S. Chatterjee and S. Sachdev, Phys. Rev. B 95, 2015133, 2017;
- S. Chatterjee, S. Sachdev and Mathias S. Scheurer, arXiv: 1705.06289

Structure of cuprate superconductors

Evidences of metallic behavior in PG phase

- Optical conductivity $\sim 1/(-i\omega+1/ au)$, with $1/ au\sim\omega^2+T^2$ Mirzaei *et al*, PNAS **110**, 5774 (2013)
- Magnetoresistance $\sim \tau^{-1}(1+aH^2\tau^2)$ follows Kohler's rule for Fermi liquids

Chan et al, PRL 113, 177005 (2014)

 T independent Hall coefficient corresponding to a carrier density of p in both higher temperature PG and in low T at high magnetic fields

Ando et al, PRL **92**, 197001 (2004), Badoux et al, Nature **531**, 210 (2016)

Figure credits: K. Fujita *et al*, Nature Physics **12**, 150–156 (2016) C. Proust *et al*, Nature **531**, 210 (2016).

Low T Hall effect measurements in YBCO

How does the Fermi surface reconstruct?

Possibility 1: Symmetry breaking: Spin density wave (SDW) order

$$\langle \vec{\varphi} \rangle \neq 0$$

Metal with electron and hole pockets

$$\langle \vec{\varphi} \rangle = 0$$

Metal with "large" Fermi surface

How does the Fermi surface reconstruct?

Possibility 2: Topological order (no symmetry breaking)

 $\langle \vec{\varphi} \rangle \neq 0$

Metal with electron and hole pockets

Electron and/or hole
Fermi pockets form in
"local" SDW order, but
quantum fluctuations
destroy long-range
SDW order

$$\langle \vec{\varphi} \rangle = 0$$

Algebraic Charge liquid (ACL) or Fractionalized Fermi liquid (FL*) phase with no symmetry breaking and pocket Fermi surfaces

 $\langle \vec{\varphi} \rangle = 0$

Metal with "large" Fermi surface

Broken symmetries in the PG metal

- Nematic order: Broken C₄ symmetry Daou et al, Nature 463, 519 (2010)
- Broken time-reversal symmetry *\textit{\theta}* Mangin-Thro *et al*, Nat. Comms *6*, 7705 (2015), Simon & Varma, PRL *89*, 247003, 2002
- Broken inversion symmetry C_2 . However, Θ C_2 , the product of inversion and time-reversal seems to be preserved.

Zhao, Belvin, Hsieh et al, Nature Physics 13, 250 (2017)

 No evidence of translation symmetry breaking in large parts of the phase diagram: Even with discrete broken symmetries, Small FS violates Luttinger's Theorem and requires topological order.

T. Senthil *et al*, PRL **90**, 216403 (2003) Paramekanti *et al*, PRB **70**, 245118 (2004)

Second Harmonic Generation measurements in YBCO

Zhao, Belvin, Hsieh et al, Nature Physics 13, 250 (2017)

Figure credits: K. Fujita et al, Nature Physics 12, 150–156 (2016)

Figure credits: Wikipedia

Figure credits: Disney Clip Art

Figure credits: K. Fujita et al, Nature Physics 12, 150–156 (2016)

Plan of the talk

Classical phase diagram of a spin-model with frustrating Heisenberg and ring-exchange

Add charges: Hartree Fock mean-field theory of the Hubbard model

Add topological order: Description in terms of CP¹ model in the insulator

Charges + Topological order: SU(2) gauge theory of the electrons on the square lattice

Square lattice AF with Heisenberg exchanges $J_1,\,J_2,\,J_3$ and J_4 and ring exchange K

Square lattice AF with Heisenberg exchanges J_1 , J_2 , J_3 and J_4 and ring exchange K

(D'): Neel order

(A'): Canted Neel order

(B'): Planar Spiral order

(C'): Conical Spiral order

Fluctuations of Neel order in the semi-classical non-linear sigma model

$$\hat{S}_i = S\eta_i \boldsymbol{n}_i \sqrt{1 - \boldsymbol{L}_i^2/S^2} + \boldsymbol{L}_i$$

 $\boldsymbol{n}^2 = 1$, $\boldsymbol{n} \cdot \boldsymbol{L} = 0$,
 $\eta_i = \pm 1$ on the two sublattices

Do a gradient expansion in n(r,t) and L(r,t)

$$\bar{\mathcal{H}}_J = \frac{\rho_s}{2} (\partial_a \mathbf{n})^2 + \frac{1}{2\chi_\perp} \mathbf{L}^2 + C_1 (\mathbf{L}^2)^2 + C_2 (\partial_a \mathbf{n})^4$$

(A'):
$$\rho_s, C_1, C_2 > 0, \chi_{\perp} < 0$$

(D'):
$$\rho_s, \chi_{\perp}, C_1, C_2 > 0$$

(C'):
$$C_1, C_2 > 0, \rho_s, \chi_{\perp} < 0$$

(B'):
$$\chi_{\perp}, C_1, C_2 > 0, \rho_s < 0$$

What symmetries are broken in these magnetically ordered phases?

	\mathcal{T}	T_x	T_y	I_x	I_y
$ec{n}$	_	_	_	+	+
$ec{L}$	_	+	+	+	+
J_x	_	+	+	_	+
J_y	_	+	+	+	_

All phases break spin-rotation, translation and time-reversal

(B'): Has additional nematic order, breaks lattice rotation

(C'): Breaks both lattice rotation and inversion

$$\mathbf{O} = \vec{L} \cdot (\vec{n} \times \nabla \vec{n}), \quad \langle \mathbf{O} \rangle \neq 0$$

Add charges: Hartree-Fock theory

Hubbard model on the square lattice: Mean-field theory of magnetism preserving translation invariance in the charge sector

$$\mathcal{H}_{U} = -\sum_{i < j, \alpha} t_{ij} c_{i,\alpha}^{\dagger} c_{j,\alpha} - \mu \sum_{i,\alpha} c_{i,\alpha}^{\dagger} c_{i,\alpha} + U \sum_{i} \hat{n}_{i,\uparrow} \hat{n}_{i,\downarrow}$$
$$\left\langle \hat{\mathbf{S}}_{i} \right\rangle = N_{0} \left[\cos \left(\mathbf{K} \cdot \mathbf{r} \right) \cos(\theta) \, \hat{\mathbf{e}}_{x} + \sin \left(\mathbf{K} \cdot \mathbf{r} \right) \cos(\theta) \, \hat{\mathbf{e}}_{y} + \sin(\theta) \, \hat{\mathbf{e}}_{z} \right]$$

$$\left\langle \hat{m{S}}_i
ight
angle = N_0 \left[\cos \left(m{K} \cdot m{r}
ight) \cos (heta) \, \hat{m{e}}_x + \sin \left(m{K} \cdot m{r}
ight) \cos (heta) \, \hat{m{e}}_y + \sin (heta) \, \hat{m{e}}_z
ight]$$

- Same phases in the doped system
- Phase diagram is particle-hole asymmetric

Quantum disorder the spins: Spin-rotation and translation invariance regained. Discrete symmetries remain broken.

$$\mathbf{n} = z_{\alpha}^* \vec{\sigma}_{\alpha\beta} z_{\beta} \text{ with } \alpha, \beta = \uparrow, \downarrow, |z_{\alpha}|^2 = 1$$

$$S = \frac{1}{2g} \int d^2r dt \, (\partial_{\mu} \mathbf{n})^2$$

$$\to \frac{1}{2g} \int d^2r dt \, |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^2$$

The CP¹ theory an has emergent U(1) gauge field a_{μ}

Quantum disorder the spins: Spin-rotation and translation invariance regained. Discrete symmetries remain broken.

For $S = \frac{1}{2}$, additional Berry phase term for the U(1) gauge field

Higgs phase with $\langle z_{\alpha} \rangle \neq 0$ Néel order wih Nambu-Goldstone (spin-wave) gapless excitations.

Confined phase with $\langle z_{\alpha} \rangle = 0$ VBS order

Quantum disorder the spins: Spin-rotation and translation invariance regained. Discrete symmetries remain broken.

For Z_2 topological order, need to condense Higgs fields with charge 2 under emergent U(1) gauge field

Simplest candidates: Spin rotation invariant long-wavelength spinon pairs:

$$P \sim \varepsilon_{\alpha\beta} z_{\alpha} \partial_t z_{\beta}$$
 , $Q_a \sim \varepsilon_{\alpha\beta} z_{\alpha} \partial_a z_{\beta}$ with $a = x, y$

Gauge invariance + Symmetry

$$\mathcal{L} = \frac{1}{g} |(\partial_{\mu} - ia_{\mu})z_{\alpha}|^{2} + s_{1}|P|^{2} + s_{2}|Q_{a}|^{2}$$

Quantum disorder the spins: Spin-rotation and translation invariance regained. Discrete symmetries remain broken.

Phase diagram at large g with $\langle z_{\alpha} \rangle = 0$

Quantum disorder the spins: Spin-rotation and translation invariance regained. Discrete symmetries remain broken.

Phase diagram at large g with $\langle z_{\alpha} \rangle = 0$

 s_1

Quantum disorder the spins: Spin-rotation and translation invariance regained. Discrete symmetries remain broken.

Phase diagram at large g with $\langle z_{\alpha} \rangle = 0$

Quantum disorder the spins: Spin-rotation and translation invariance regained. Discrete symmetries remain broken.

Phase diagram at large g with $\langle z_{\alpha} \rangle = 0$

Three phases with Z_2 topological order

Quantum disorder the spins: Spin-rotation and translation invariance regained. Discrete symmetries remain broken.

Phase diagram at large g with $\langle z_{\alpha} \rangle = 0$

Three phases with Z_2 topological order

$$\langle P \rangle \neq 0$$
 , $\langle Q_a \rangle = 0$

(X. Yang and F. Wang, 2016; X.-G Wen, 2002)

(A) \mathbb{Z}_2 topological order and all symmetries preserved

↑³²

$$\langle P \rangle = 0$$
 , $\langle Q_a \rangle = 0$

(D) Valence Bond Solid (VBS)

The broken symmetries co-existing with Z_2 topological order are precisely those observed in the pseudogap phase of the cuprates

and current loop order

$$\langle P \rangle \neq 0$$
 , $\langle Q_a \rangle \neq 0$

(B) \mathbb{Z}_2 topological and Ising-nematic order

(N. Read and S.S. 1991)

$$\langle P \rangle = 0 \ , \ \langle Q_a \rangle \neq 0$$

Describes ordered phases at small g: break translation and spinrotation symmetries, and have no topological order.

Phase diagram of \mathbb{CP}^1 model at small g, coupled to Higgs fields P and Q_a (a=x,y). All phases have $\langle z_{\alpha} \rangle \neq 0$

Classical phase diagram of square lattice antiferromagnet with near-neighbor exchanges J_1, J_2, J_3, J_4 and ring-exchange K

Intertwining topological order and discrete symmetry breaking in the PG metal

Spin-fermion model: Electrons on a square lattice

$$H = -\sum_{i < j} t_{ij} c_{i,\alpha}^{\dagger} c_{j,\alpha} - \mu \sum_{i} c_{i,\alpha}^{\dagger} c_{i,\alpha} + H_{int}$$

Couple to AF order parameter

$$H_{int} = -\lambda \sum_{i} \eta_{i} \vec{\phi}(i) \cdot c_{i,\alpha}^{\dagger} \vec{\sigma}_{\alpha\beta} c_{i,\beta}$$

When $\vec{\phi}$ is a site-independent constant, we have long range AF order and a gap in the anti-nodal spectrum

 $\langle \vec{\varphi} \rangle \neq 0$

Metal with electron and hole pockets

 $\langle \vec{\varphi} \rangle = 0$

Metal with "large" Fermi surface

Intertwining topological order and discrete symmetry breaking in the PG metal

Locally well-developed AF order parameter + angular fluctuations

Transform to a rotating reference frame using SU(2) rotations R_i

$$\begin{pmatrix} c_{i\uparrow} \\ c_{i\downarrow} \end{pmatrix} = R_i \begin{pmatrix} \psi_{i,+} \\ \psi_{i,-} \end{pmatrix}$$

Degrees of freedom: Spinless chargons (psi) and Higgs Field H_i

$$\sigma^{\ell} \Phi^{\ell}(i) = R_i \, \sigma^a H^a(i) \, R_i^{\dagger}$$

Intertwining topological order and discrete symmetry breaking in the PG metal

Simplest effective Hamiltonian for the chargons is identical to the electrons: Higgs field replaces AF order

$$H_{\psi} = -\sum_{i < j} t_{ij} \psi_{i,s}^{\dagger} \psi_{j,s} - \mu \sum_{i} \psi_{i,s}^{\dagger} \psi_{i,s} + H_{int}$$

$$H_{int} = -\lambda \sum_{i} \eta_{i} \vec{H} \cdot \psi_{i,s}^{\dagger} \vec{\sigma}_{ss'} \psi_{i,s'} + V_{H}$$

The chargons will inherit the anti-nodal gap only if such a transformation R_i can be found. Need to suppress Z_2 vortices of SO(3) Higgs field \Longrightarrow

Metal with Z_2 topological order and a pseudogap

Intertwining topological order and discrete symmetry breaking in the PG metal

Global phase diagram

Figure credits: http://creatememe.chucklesnetwork.com/memes/16712

Comparisons with experiments

Hall data shows good qualitative agreement, as do data on longitudinal thermal and electric transport

A. Eberlein et al, PRL, 117, 187001 (2016)

Badoux, Proust, Taillefer et al, Nature **531**, 210 (2016)

S. Chatterjee, S. Sachdev and A. Eberlein, PRB, 96, 075103 (2017)

Comparisons with numerics

Electron spectral functions / self-energies from the SU(2) gauge theory closely resemble those from DMFT/QMC on 2d Hubbard model

M. Scheurer, S. Chatterjee, M. Ferrero, A. Georges, S. Sachdev and W. Wu, to appear

Summary

SU(2) gauge theory of metals with Z_2 topological order can explain the concurrent appearance of anti-nodal gap and discrete broken symmetries in the hole-doped cuprates

Topologically ordered phases energetically proximate to the Neel state have the desired broken symmetries

Thermal/electric transport and spectroscopic data for such models are consistent with experiments

Ongoing work: Comparison with DMFT/QMC on the 2d Hubbard model. Preliminary agreements seem encouraging!

Thank you for your attention!

