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oduc 1o

U = union = "or”; AU B = all outcomes in A or B (or both)
N = intersection = "and”; A N B = all outcomes in both A and B

What is Pr {A U B}? Is it always Pr{A} + Pr{B}?

Consider the following events

A: the stock market goes up at least 1 percent
B: the stock market goes up at least 2 percent
Note that AUB = A, so Pr{AU B} = Pr{A};

Suppose Pr{A} = 0.2, Pr{B} = 0.3; if we add them, we get 0.5 which is not
Pr{AuU B} =Pr{A4}.
Even worse, suppose Pr{A} = 0.8, Pr{B} = 0.9; if we add them, we get a
”probability” over 1 !

What went wrong? We double-counted some outcomes, such as the market
going up 3 percent.

Which outcomes did we count twice? The ones in both A and B: AN B.

We'll fix it by subtracting out one copy of them:

Pr{AUB} =Pr{A} +Pr{B} - Pr{AnN B}



2 Co diio al P obabili y

How can we calculate Pr{A N B}? Well for AN B to happen, we need A to
happen, with probability Pr{A}.

Then, knowing that A happens, our probability that B happens is Pr { B|A}.

Multiply these two [they are independent] to get
Pr{ANB} =Pr{A}-Pr{B|A}

Divide to get another useful formula:

Pr{AN B}

Pr{BlA} = =5

Let’s try an example:
What is your probability that Person X’s birthday is in December? 1/12 or
31/365, right?
Suppose I told you it’s in the last quarter of the year. What is your proba-
bility now? 1/3 (or 31/(31 + 30 + 31))
Let A be the event ”birthday in December”, and B be the event ”birthday
in last quarter” (p =1/4 or so)

Then
Pr{ANB}=1/12

Pr{4|B} = — T 1/3

3 Pa iioig

To calculate a difficult probability, we often assume we have more info than
we really do, then weight the result based on the probability of that info
being true.

My roommate is going to the video store; what are the chances he’ll pick a
movie I like?

Well, he might pick an action flick, comedy, drama, or ”other”. Here are my

probabilities:
Pick Match
a 0.3 0.5
c 0.5 0.2
d 0.1 0.9
o 0.1 0.5



Multiply them to get 0.154 0.10 + .09 4 .05 = 0.39
Make sure the partitioning includes everything, exactly once!

4 Bayes’ Rule

Pr{C}
Pr{B}

Pr{C|B} = Pr {B|C}

It’s almost like a conversion: inches = ¢m * (inches/cm)
Consider an alcohol test for drivers that has a 5% false-positive rate, and a
10% false-negative rate. Suppose 15% of drivers are drunk. Given that you
fail the test, what is the probability that you were drunk? Let B be failing
the test, and C be drunkenness.
It looks like we need to calculate Pr{B}: we do this by partitioning (aka
conditioning):

Pr{B} = Pr{drunk} Pr {fail|drunk} +

Pr {sober} Pr {fail|sober}
=.15-.90+ .85-.05 = .1775

Now we have
Pr {drunk|failed} = Pr {fail|drunk} - Pr {drunk} /0.1775

0.90 - 0.15/0.1775 = 0.7606

Is this enough to convict? Is there "reasonable doubt”?

Is the probability of being drunk really 0.157 It depends on how you were
stopped: randomly, or for driving poorly. Does this make sense? Consider
10000 drivers. Separate them into drunk and sober:

8500 sober 1500 drunk
425 fail 1350 fail

Given that you’re in the ”fail” group, it does look like about 3 out of 4 of
them are drunk.



5 Ra dom Va iables

For those times when a random event has a numerical value associated with
it, we call it a random variable (RV). We usually use capital letters like X,
Y, and Z; I write them as Roman letters to distinguish them from lowercase.
Two fundamental kinds: discrete (usually integer) and continuous. For a
discrete RV, we describe it by the probability of each value. This is the
probability mass function, pmf:

px(z) =Pr{X ==z}
Since the RV has to equal something, the sum of these values must be 1:
> px(z)=1
T€S
For a continuous RV, we describe it by the probability that the RV will be
near a value. We call this the probability density function (pdf):
px(z)dr = Pr{z < X <z +dz}

Again, since the RV must fall somewhere, the “sum” (integral) of the pdf

must be one: ~
/ px(z)dr =1
— 00

Many of our continuous RV’s are non-negative, so we can integrate from 0
instead of —oo.
Both discrete and continous RV’s have a Cumulative Distribution Function,
CDF. This is

Px(z) =Pr{X <z}

For a discrete RV, this is a step function. For a continuous RV, this is a
continuous function. It goes from 0 at —oo to 1 at +oo (if not before).
Expected value: expected long-run average of many samples of the random vari-
able.

Suppose I have N samples of a discrete RV, and I average them:

1
N X1+ Xa 4 Xn)

Let’s consider that sum: how many of them will be equal to 17 I'd say N - px(1).
How many of them will be equal to 27 I'd say N - px(2). So, let’s group them:

Xi+Xo+- Xy =

4



1-Npx(1)+2-Npx(2)+---

i kNpx (k)

k=—00

When we divide by N, we get that the long-run average is

= i kpx(k))

k=—00
Similarly, for continuous RV, we do an integral instead of a sum:
o
E[X] :/ zpx (z)dx
k=—00

I'm going to write out all the terms in the expected value sum:

1p(1) 2p(2) 3p(3) 4p(4)
p(1) p2) p@B) p4)|1-P0)
p(2) p(3) pHA)|1-PQ)
p(3) p(4) P(2)
p(4) P(3)

Now, the usual expression sums down the columns first. But we should get
the same answer if we sum along the rows. What’s the sum of the first row?
It’s the probability that X is 1 or greater: 1 — P(0). The sum of the second
row is the probability that X is 2 or greater: 1 — P(1). And so forth. We
sum these rows to get

E[X] =} (1 - Px(k))

k=0

6 Expec ed Value of a Fu c io

To take the expected value of Y = f(X), we can’t just take f(E[X]); we
have to re-do the summation or integration:

E[Y]= ) oof(k)px(k)

k=—o0

BlY]=[ ocof@px(a)da

Using these, we can see that
E[aX 4+ b0Y] = aE [X] + bE [Y]

even if X and Y are dependent. This is very useful.
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7 Va ia ce

If we have a random wariable, how much does it vary? We could measure
this by the expected difference from its mean, but that turns out to be zero.
Instead, we square the difference:

Var (X) = E [(X — E[X])?]

Remember, this is not the same as (E [X — E [X]])*.
If we multiply an RV by a constant, the variance changes; if we add a con-
stant, it doesn’t:

Var (aX +¢) = a®X

If two variables are independent, then
Var (X +Y) = Var (X) + Var ()

When consulting, we don’t quote the variance to our clients, since it is hard
to interpret.

To get a measure of variability that’s in the same units as the RV, we take
the square root of the variance. This is the “standard deviation”.

8 Joi P obabil ies

Suppose someone conducted a study and found pairs of adult brothers and
sisters, and recorded their heights. One could make a two-dimensional his-
togram, plotting how many pairs (by percent) had each height. This would
give you an estimate of the probability Pr{X = z,Y = y} where X is the
sister’s height, and Y is the brother’s. This is the Joint Mass Function (or
Joint Density Function).

Just like a single-variable PMF, it should sum to 1.

If you know that I am 6 feet tall, what is your pmf for my sister’s height?
This is a conditional pmf: px|y(z|y). It also has to sum (over z) to 1.

The other conditional pmf is: knowing my sister’s height, what is mine? This

is py|x (y|z).



9 Ma gi al Dis ibu io

Given the joint pmf, and not knowing how tall I am, what is your pmf for
my sister’s height? This is written, using the law of total probability,

Px (l‘) = ZPX,Y(CU, y)

and this is the marginal pmf for X. Y is similar.
Independence: do you expect these to be independent? If I told you the
average of my mom & dad’s heights, would my height be independent from
my sister’s? This is ”conditional independence”.



