
Notes on Graph Theory

Aidan Backus

May 1, 2017

These are my notes on graph theory, based on CS61B, Data Structures, taught by Josh
Hug, and Math 55, Discrete Math, taught by Vera Serganova.

1 Definitions

A graph is a pair of sets V of vertices and E of edges, which are ordered pairs in V 2. An
edge of the form (a, b) is called an edge from a to b.

The degree of a vertex is the number of edges connected to that vertex.

Theorem 1.1 (Handshaking Lemma). The sum of all degrees of vertices in a graph is even.

Proof. Each edge contributes twice to the sum: once for its start point and the other for its
end. So the sum always increases by 2 for each edge.

A loop is an edge from a vertex v to itself, i.e. it is of the form (v, v); this counts twice
in the counting of degree. A graph is called symmetric or undirected if for all edges (a, b)
there exists an edge (b, a). A graph has multiedges if there are multiple edges from a vertex
a to b. If a graph has no loops, is symmetric and has no multiedges, the graph is called a
simple graph.

A component of a simple graph is an equivalence class of the vertices, such that the
vertices are only connected to each other.

Graphs which are not undirected are called directed or digraphs.
A walk is a means of getting from one vertex to the next by taking various edges. A

walk which contains each vertex only once is called a path and a walk which begins and
ends on the same vertex is called a cycle.

If there exists a path between any two vertices in the graph, the graph is called con-
nected.

A bijection φ : VG1 → VG2 is called an isomorphism if each vertex in the domain has
edges mapping to the corresponding vertices as in the codomain. If one such φ exists then
G1 and G2 are called isomorphic.

Two vertices are adjacent if there is an edge from one to the other.
If the vertices are labeled by {1, 2, . . . , n}, the adjacency matrix of a finite graph is the

matrix in Rn×n whose ijth entry is the number of edges from i to j.

1

Theorem 1.2. The adjacency matrix of an undirected graph is symmetric. Moreover, its
eigenvalues are all real and nonnegative.

Proof. Let A be one such adjacency matrix. If there is an entry in Aij then there must be the
same entry in Aji because the graph is symmetric. By the spectral theorem, its eigenvalues
are real. Its eigenvalues cannot be negative because there cannot be negative entries in this
matrix (since there cannot be a negative number of edges between two vertices).

A vertex is called incident to an edge if the edge starts or ends on the vertex.
If the vertices are labeled by {1, 2, . . . , n}, edges labeled by {1, 2, . . . ,m}, the incidence

matrix of a finite graph is the matrix in Rn×m such that if M is the adjacency matrix, then
Mij is one if i is incident to j or zero otherwise.

The null graph of order n, written Nn, is the graph (unique up to isomorphism) with n
vertices and 0 edges.

The complete graph of order n, written Kn, is the graph (unique up to isomorphism)
with n vertices and edges connecting all vertices.

The cycle graph of order n, written Cn, is the graph with n vertices, and a edge
connecting each vertex in exactly one cycle.

The wheel graph of order n, written Wn, is the cycle graph of order n−1, with another
vertex which every other vertex is adjacent to.

The path graph of order n, written Pn, is the cycle graph of order n + 1 but a vertex
removed.

A regular graph of order n is one such that every vertex is of degree n.
A bipartite graph is one where there exists a partition of V into two equivalence classes,

such that if A is an equivalence class and a ∈ A, then a is not adjacent to any b ∈ A.

2 Paths

Theorem 2.1. If G is a bipartite graph, then each cycle in G has even length.

Proof. Suppose that G had an odd-length cycle, v0, v1, . . . , vn, v0, n even, and let A and B
be the equivalence classes of V . Without loss of generality assume v0 ∈ A. Then v1 ∈ B,
v2 ∈ A, and so on, so that vi ∈ A if and only if i is even. But n is even, so vn ∈ A, which
implies v0 ∈ A, a contradiction.

Theorem 2.2. If G is a simple graph with n vertices, m edges, and k components, then

n− k ≤ m ≤ (n− k)(n− k + 1)

2
.

Proof. Prove m ≥ n − k by induction on m. If G is null, then m = 0, but n = k, so that
this is true. Otherwise, suppose that G contains k components and m0 edges, and that m0

is chosen so that within a component, each vertex has precisely one path to another vertex.
Then if we remove an edge, we end up with a graph with k + 1 components and m0 − 1
edges. The induction hypothesis implies that m0 − 1 ≥ n− (k + 1). So this bound holds.

To prove m ≤ (n−k)(n−k+1)
2

, suppose that C1, C2 ⊆ G are complete components of G with
v1, v2 edges respectively, such that v1 ≥ v2 ≥ 1. Treat C1, C2 as subgraphs, and add a vertex

2

to C1, removing it from C2, and complete this new C ′1. Then the total number of edges in
C ′1 and C2 increases by v1 − v2 + 1 ≥ 0 so that the inequality is an equality precisely when
a graph is complete.

Suppose G is bipartite with equivalence classes V1 and V2. A complete matching from
V1 to V2 is a bijection f : V1 → X ⊆ V2 such that f(v1) = v2 if and only if there exists an
edge from v1 to v2.

Theorem 2.3 (Hall’s marriage theorem). Suppose G is bipartite with equivalence classes V1
and V2, and if A ⊆ V1 then φ(A) ⊆ V2 is the set of vertices adjacent to vertices in A. Then
there exists a complete matching from V1 to V2 if and only if |A| ≤ |φ(A)| for all A ∈ 2V1.

Proof. Suppose that there is a complete matching but |A| > |φ(A)|. Then the bijection f is
not onto, a contradiction.

Now suppose that m = |V1|.
Consider a set A ⊆ V1 where |A| < m. If |φ(A)| ≥ |A| then we can map these vertices to

their counterparts, and recursively reduce the problem to one of the form V1 \A→ V2 \φ(A).
The hypothesis still holds because for each a we are removing from a set B ⊆ V1, we are
removing a f(a) from φ(B) ⊆ V2.

By induction we reduce the problem to one where m = 1. In this case the only nontrivial
subset of V1 is itself. Clearly if m ≤ |φ(V1)| then we can simply map V1 to a member of
φ(V1) and be done.

Suppose G is a connected graph.
A cutset of G is a minimal set of edges such that removing a single edge splits G into

components. The edge connectivity λ(G) is the cardinal number of the smallest cutset of
G.

A separating set of G is a minimal set of vertices such that removing a single vertex
splits G into components. A separating set of cardinal number 1 is called a cut vertex.
The vertex connectivity κ(G) is the cardinal number of the smallest separating set of G.

A Eulerian cycle is one that contains every edge of G precisely once.

Theorem 2.4 (Seven Bridges of Konigsberg). G contains an Eulerian cycle if and only if
the degree of every vertex in G is even.

Lemma 2.4.1. Suppose H is a graph and every vertex of H has degree at least 2. Then H
contains a cycle.

Proof of the lemma. If H is not simple, then it contains a loop or multiedge, and so it
contains a cycle.

Otherwise, H is simple, and contains a walk through the vertices vj, where v0 is any vertex
in H, and vi is any vertex adjacent to vi−1 except vi−2, which necessarily exists because the
degree of vi−1 is at least 2. But H contains finitely many vertices, so eventually we will find
a cycle.

Proof of the Seven Bridges of Konigsberg. Suppose G has an Eulerian cycle P . All vertices
appear in P , because P contains every edge and G is connected. Each time P passes through

3

a vertex, its degree increases by 2: once for the way in, once for the way out. So the vertex
has an even degree.

Now suppose that G may not have a Eulerian cycle but does have vertices of even degree.
G is connected, so that the degree of each vertex is at least 2. So G contains a cycle C0. If C0

is not Eulerian, remove the edges of C0 from G to create a graph G0, possibly disconnected.
Because C passes through every vertex twice, removing C0 from G will create a graph whose
vertices still have even degree.

Suppose then, recursively, that each component of Gi has an Eulerian cycle. (Here we
are defining G = G0.) Then Gi−1 must have an Eulerian cycle, which will go through Gi and
Ci−1: follow Ci−1 until we find a non-isolated vertex of Gi−1. Then traverse the Eulerian
cycle of Gi−1, before returning of Ci−1. Since Ci−1 is a cycle, we will eventually reach the
original point of Ci−1. This path is an Eulerian cycle in the component of Gi.

If, at any point, we find a null graph Gn, then each component contains precisely one
vertex of Gn, which of course has a trivial Eulerian cycle.

Corollary 2.4.1. G has an Eulerian cycle if and only if its edges can be partitioned into
disjoint cycles.

Proof. If G has an Eulerian cycle, then it has a cycle containing all of its edges, so we can
impose a trivial partition on it.

Now suppose G may not have a Eulerian cycle but whose edges are partitioned into
equivalence classes of disjoint cycles. Then every vertex must be part of a cycle, because G
is connected, so G meets the hypothesis of the Seven Bridges of Konigsberg.

Theorem 2.5 (A* search algorithm). Suppose G is a weighted, directed graph with vertices
a and b. If we have a heuristic h : V → [0,∞), estimating the distance from any vertex v to
b, we can compute the shortest path from a to b as follows:

1. Initialize an empty set S, the so-called closed set.

2. Initialize an empty function f : V → V , the backtracking function.

3. Initialize an empty function g : V → [0,∞), the backtracking cost.

4. Initialize an empty function j : V → [0,∞), the estimated cost to the end goal through
that function.

5. Initialize an empty priority queue PQ, the so-called open set, ordered by j.

6. Set f(a) = a, g(a) = 0, j(a) = h(a), and insert a into PQ.

7. While PQ is not empty:

(a) Pop v from PQ.

(b) If v = b, then:

i. Create a queue Q, the back-trace.

ii. While v 6= a:

4

A. Push v onto Q.

B. Set v = f(v).

iii. Return Q.

(c) Insert v into S.

(d) For each vertex w adjacent to v and not in S, with distance d(v, w):

i. Define t = g(w) + d(v, w).

ii. If w is not in PQ, push it onto PQ.

iii. Otherwise:

A. Set g(w) = min(t, g(w)).

B. Sink/swim w through PQ.

C. Set j(w) = g(w) + h(w).

D. If w sunk or swam, set f(w) = v.

8. Conclude that such path exists.

Proof. The neighbor loop will compute which paths have the shortest distance, and the
priority queue will choose the shortest one.

If we want a path to every vertex rather than just b, then we can simply return f and
define h(v) = 0 for all h. This special case of A* is known as Dijsktra’s algorithm.

3 Trees

A graph without cycles is called a forest; each component of a forest is called a tree.

Theorem 3.1. Suppose T is a graph with n vertices, then each of the following statements
is equivalent:

1. T is a tree.

2. T is a forest with n− 1 edges.

3. T is connected and has n− 1 edges.

4. T is connected and each edge is cut.

5. There exists exactly one path between any two vertices of T .

6. T contains no cycles but adding an edge creates a cycle.

Proof. Suppose T is a tree. Then T is a forest, and a forest must have fewer than n edges,
otherwise there would be a cycle. But T must have maximally many edges because it is
connected. So T has n− 1 edges.

Suppose T is a forest with n − 1 edges. Then T has maximally many edges without
adding any cycles, so it is connected.

5

Suppose T is connected with n − 1 edges. Then removing an edge will disconnect the
graph because it’s impossible to have a connected graph with n − 2 edges. So each edge is
cut.

Suppose T is connected with entirely cut edges, so that there exists a path between any
two points in T . But there can only be one such path, otherwise one could remove an edge
in the second path without disconnecting T , and that edge would not be cut.

Suppose there exists exactly one path between any two points in T . Then T cannot
contain a cycle, because that would provide a second path; but adding an edge would link
to a vertex that there already exists a path to from the current vertex, so that there would
exist a cycle.

Suppose that T contains no cycles, but adding an edge would create one. Then T is a
forest, and it is impossible to add an edge and maintain this property. The only way one
could add an edge to a forest is if two of its vertices did not have a path between them. So
T is connected, therefore a tree.

Suppose G is a connected graph. Then we can remove edges from its cycles until a tree
called a spanning tree is left over. The minimal number of edges removed to create a
spanning tree is called the cycle rank γ(G). If the edges are weighted, a spanning tree such
that the sum of the edges is minimized is a minimum spanning tree.

Theorem 3.2 (Prim’s algorithm). If G is a weighted, connected, undirected graph, we can
compute a minimum spanning tree as follows:

1. Initialize vertices in G with a cost ∞.

2. Initialize an empty tree T and priority queue PQ.

3. Insert all vertices into PQ.

4. While not all vertices of G are also vertices of T :

(a) Pop a vertex Vi from PQ.

(b) Add Vi to T , and if there exists an associated edge Ei, add Ei to T .

(c) For each edge Eij adjacent to Vi, if Vj is in PQ and the weight of Ei is less than
the cost of Vj:

i. Set the cost of Vj to the weight of Ei.

ii. Set the edge Ej associated with Vj to Eij.

5. Return T .

Proof. Prim’s algorithm generates a tree T because precisely one edge is mapped to each
vertex. T is spanning because G is connected and all edges are listed in the priority queue;
it is minimum because Prim’s algorithm is a special case of Dijkstra’s algorithm.

To traverse a tree, we start at a point V0 and then can use breadth first search, which
considers all points adjacent to Vi before considering points adjacent to those vertices; or
depth first search, which considers the points adjacent to Vi before the “siblings” of Vi.

6

