An Overview of *p*-adic Numbers, Analysis, and ζ -function

Aathreya Kadambi

April 2023

Contents

1	Introduction: p-adic Numbers	1
2	Analysis of Ω	3
3	<i>p</i> -adic Distributions and The <i>p</i> -adic ζ Function	4

1 Introduction: *p*-adic Numbers

Before we start, I will mention that this presentation will be based on Professor Neal Koblitz's books on the subject. Here is a brief history of p-adic analysis given by him in his book:

Kummer and	1850-	Introduced p -adic numbers and developed basic properties
Hensel	1900	
Minkowski	1884	Proved that an equation $a_1x_1^2 + \ldots + a_nx_n^2 = 0$ is solvable in
		the rational numbers if and only if it is solvable in the reals
		and in the p -adic numbers for all primes p
Tate	1950	Fourier analysis on <i>p</i> -adic groups; pointed toward interrelations
		between p -adic numbers and L -functions and representation
		theory
Dwork	1960	Used <i>p</i> -adic analysis to prove the rationality of the ζ -function
		of an algebraic variety defined over a finite field, part of teh
		Weil conjectures
Kummer	1851	Congruences for Bernoulli numbers
Kubota-	1964	Interpretation of Kummer congruences for Berknoulli numbers
Leapoldt		using p -adic zeta-function
Iwasawa, Serre,	1960s-	p-adic theories for many arithmetically interesting functions
Mazur, Manin,	1980s	
Katz, others		

We start by introducing the *p*-adic numbers. To do this, we need a few definitions.

Definition (Metric). Let X be a nonempty set. A distance or **metric** on X is a function $d: X \times X \to \mathbb{R}_{\geq 0}$ such that

- 1. d(x, y) = 0 if and only if x = y.
- 2. d(x, y) = d(y, x).
- $3. \ d(x,y) \leq d(x,z) + d(z,y) \text{ for all } z \in X.$

Definition (Metric Space). A set X and a metric d together are called a **metric space**.

Generally, we work with X being a field, and our metrics will come from norms on the field, defined as follows:

Definition (Norm). A norm on a field F is a map, denoted ||, from F to $\mathbb{R}_{\geq 0}$ such that

- 1. |x| = 0 if and only if x = 0.
- 2. $|x \cdot y| = |x| \cdot |y|$.

3. $|x+y| \le |x|+|y|$.

Definition $(v_p, \text{ ord}_p)$. Let p be any prime number. For any nonzero integer a, let $v_p(a)$ be the largest power of p which divides a.

Definition (*p***-adic Norm).** Define the map $||_p$ on \mathbb{Q} as:

$$|x|_{p} = \begin{cases} \frac{1}{p^{v_{p}(x)}} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Proposition. $||_p$ is a norm on \mathbb{Q} .

Proof by checking the three properties.

We now classify norms:

Definition (Non-Archimedian Norms/Metrics). A norm is called **non-Archimedian** if $|x + y| \le \max(|x|, |y|)$ always holds. A metric is called **non-Archimedian** if $d(x, y) \le \max(d(x, z), d(z, y))$.

We call norms and metrics that are not non-Archimedian as Archimedean. We can easily verify that $| |_p$ is a non-Archimedian norm on \mathbb{Q} .

Definition (Cauchy Sequence). In a metric space X, a **Cauchy sequence** $(a_k)_{k \in \mathbb{N}}$ of elements in X is a sequence such that for all $\epsilon > 0$, there exists N such that $d(a_m, a_n) < \epsilon$ whenever m, n > N.

Definition (Equivalence of Norms/Metrics). Two metrics d_1 and d_2 are equivalent if a sequence is Cauchy with respect to d_1 if and only if it is Cauchy with respect to d_2 . Two norms are equivalent if their corresponding metrics are equivalent.

Theorem (Ostrowski's Theorem). Every nontrivial norm | | on \mathbb{Q} is equivalent to $| |_p$ for some prime p or for $p = \infty$.

Remark. Here $||_{\infty}$ denotes the regular absolute value. A trivial norm is a norm || such that |0| = 0 and |x| = 1 for $x \neq 0$.

Here is one more important theorem:

Theorem. In a metric space with a non-Archimedian metric, a sequence is Cauchy if and only if the difference between adjacent terms approaches zero, and as a corollary if the metric space is also complete, an infinite sum converges if and only if its general term approaches zero.

Now, let us take a look at how we will build up complex numbers from this new metric.

- Obtain \mathbb{Q}_p , the *p*-adic completion of \mathbb{Q} , which we get by considering Cauchy sequences of rational numbers.
- Perform an infinite sequence of field extensions to join solutions to higher degree polynomial equations, resulting in an algebraically closed field \$\overline{Q}_p\$.
- Unfortunately this is not complete, so we complete again to get Ω .

After performing the first step, the following theorem gives us a good feel for \mathbb{Q}_p :

Theorem. Every equivalence class $a \in \mathbb{Q}_p$ for which $|a|_p \leq 1$ has exactly one representative Cauchy sequence of the form $\{a_i\}$ for which

1.
$$0 \le a_i < p^i$$
 for $i = 1, 2, 3,$

2. $a_i \equiv a_{i+1} \pmod{p^i}$ for i = 1, 2, 3, ...

We can extend this idea to all $a \in \mathbb{Q}_p$ by first multiplying a by p^m to get a p-adic number $a' = ap^m$ satisfying $|a'|_p \leq 1$. We then get the following representation for elements of \mathbb{Q}_p :

$$a = \frac{b_0}{p^m} + \frac{b_1}{p^{m-1}} + \ldots + \frac{b_{m-1}}{p} + b_m + b_{m+1}p + b_{m+2}p^2 + \ldots$$

Definition (*p***-adic Integers).** We define $\mathbb{Z}_p = \{a \in \mathbb{Q}_p : |a|_p \leq 1\}$ to be the *p***-adic integers**.

2 Analysis of Ω

Rather than show how Ω is constructed, for the purposes of this analysis course, it is more interesting to proceed with some analysis of Ω . We start with power series. Analogously to Hadamard's formula, we define the radius of convergence of a power series as follows:

Definition (Radius of Convergence). Consider the expression

$$f(X) = \sum_{n=0}^{\infty} a_n X^n$$

where $a_n \in \Omega$ for each *n*. When $|a_n x^n|_p \to 0$, we can give f(x) the value $\sum_{n=0}^{\infty} a_n x^n$. The radius of convergence defined as

$$\frac{1}{R} = \limsup |a_n|_p^{1/n}.$$

It can then be shown that the series converges if $|x|_p < R$ and diverges when $|x|_p > R$.

Theorem. If $|x|_p < R$, f converges at x. If $|x|_p > R$, f diverges at x.

Proof.

Consider $|x|_p = (1-\epsilon)R$ for $\epsilon > 0$. Then $|a_n x^n|_p = (|a_n|_p^{1/n})^n (R(1-\epsilon))^n$, and since there are only finitely many n such that $|a_n|_p^{1/n} > \frac{1}{R - \frac{1}{2}\epsilon R}$,

$$\lim_{n \to \infty} |a_n x^n|_p \le \lim_{n \to \infty} \left(\frac{(1-\epsilon)R}{(1-\frac{1}{2}\epsilon)R} \right)^n = 0$$

Similarly, we can show that when $|x|_p > R$, this limit is not zero.

Definition (Closed Disc). The closed disc of radius $r \in \mathbb{R}$ about $a \in \Omega$ is

$$\overline{D}_a(r) := \{ x \in \Omega : |x - a|_p \le r \}$$

Definition (Open Disc). The **open disc** of radius $r \in R$ about $a \in \Omega$ is

$$D_a(r) := \{ x \in \Omega : |x - a|_p < r \}$$

We also denote $\overline{D}(r) := \overline{D}_0(r)$ and $D(r) := D_0(r)$.

Remark. $\overline{D}_a(r)$ and $D_a(r)$ are both simultaneously closed and open, so the above definitions are a bit questionable topologically. We ware working in a "totally disconnected topological space".

Here are some quick Lemmas that I will not show here:

Lemma. Every f(X) with p-adic integer coefficients converges in D(1).

Lemma. Every f(X) which converges in a disc D = D(r) or $\overline{D}(r)$ is continuous on D.

Remark. As an interesting warning, it is important to note that series of rational numbers may not converge to the same rational number with respect to $||_p$ and $||_{\infty}$.

Definition (Differentiable). A function $f : \Omega \to \Omega$ is differentiable at $a \in \Omega$ if $\frac{f(x) - f(a)}{x - a}$ approaches a limit in Ω as $|x - a|_p \to 0$.

Definition (Locally Analytic). If a function can be represented by a convergent power series in a neighborhood of any point in its region of definition, we say that it is **locally analytic**.

Theorem. If $f(X) = \sum_{n=0}^{\infty} a_n X^n$ is a power series, then it is differentiable at every point in its disc of convergence, and it can be differentiated term by term. In particular, its derivative at a point a in the disc of convergence is

$$\sum_{n=1}^{\infty} n a_n a^{n-1}$$

Remark. There is a theory of integration on Ω , but I won't discuss that today.

3 *p*-adic Distributions and The *p*-adic ζ Function

Before we consider the *p*-adic ζ Function, we have the following theorem:

Theorem.

$$\xi(2k) = (-1)^k \pi^{2k} \frac{2^{2k-1}}{(2k-1)!} \left(-\frac{B_{2k}}{2k}\right)^k$$

where B_{2k} is the Bernoulli number.

This theorem motivates the study of the $-\frac{B_{2k}}{2k}$ term. We again start with some definitions.

Definition (Interval). A set of the form $a + p^N \mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x - a|_p \leq (\frac{1}{p^N})\}$ (denoted $a + (p^N)$) for $a \in \mathbb{Q}_p$ and $N \in \mathbb{Z}$ is called an **interval**.

Definition (Locally Constant). Let X And Y be two topological spaces. A map $f: X \to Y$ is called **locally constant** if every point $x \in X$ has a neighborhood U such that f(U) is a single element of Y.

Definition 1 (p-adic Distribution). A p-adic distribution μ is a \mathbb{Q}_p linear map from the \mathbb{Q}_p vector space of locally constant functions on X to \mathbb{Q}_p . We denote $\mu(f)$ as $\int f\mu$.

Definition 2 (*p*-adic Distribution). A *p*-adic distribution μ on X is an additive map from the set of compact open sets in X to \mathbb{Q}_p . In other words, if $U \subseteq X$ is the disjoint union of compact open sets U_1, U_2, \ldots, U_n , then

$$\mu(U) = \mu(U_1) + \ldots + \mu(U_n).$$

Proposition. Every map μ from the set of intervals contained in X to \mathbb{Q}_p for which $\mu(a + (p^N)) = \sum_{b=0}^{p-1} \mu(a + bp^N + (p^{N+1}))$ whenever $a + (p^N) \subseteq X$ extends uniquely to a p-adic distribution on X.

We will now take a look at the Bernoulli Distributions. **Definitions (Bernoulli Polynomials** $B_k(x)$). Consider

$$\frac{te^{xt}}{e^t - 1} = (\sum_{k=0}^{\infty} B_k \frac{t^k}{k!}) (\sum_{k=0}^{\infty} \frac{(xt)^k}{k!})$$

Collecting the terms for t^k , for each k we obtain a polynomial in x. $B_k(x)$ the **Bernoulli polynomial** is defined to be k! times this polynomial.

Definition. $\mu_{B,k}(a + (p^N)) := p^{N(k-1)}B_k(\frac{a}{p^N}).$ Using the previous proposition,

Proposition. $\mu_{B,k}$ extends to a distribution on \mathbb{Z}_p called the "kth" Bernoulli distribution.

Example. The first few Bernoulli distributions are

$$\mu_{B,0}(a + (p^N)) = p^{-N}$$

which is called the Haar distribution,

$$\mu_{B,1}(a + (p^N)) = B_1(\frac{a}{p^N}) = \frac{a}{p^N} - \frac{1}{2}$$

which is called the Mazur distribution, and

$$\mu_{B,2}(a+(p^N)) = p^N(\frac{a^2}{p^{2N}} - \frac{a}{p^N} + \frac{1}{6})$$

Now a full consideration of this subject would take far too long, so I will simply summarize various pieces.

Definition (Measure). A *p*-adic distribution μ on X is a **measure** if its value on compact open $U \subseteq X$ are bounded by some constant $B \in \mathbb{R}$.

To make the Bernoulli distributions measures, we perform a process called regularization and define: **Definition (Regularized Bernoulli Distribution).** Denoted by $\mu_{k,\alpha}$ or $\mu_{B,k,\alpha}$,

$$\mu_{k,\alpha}(U) := \mu_{B,k}(U) - \alpha^{-k} \mu_{B,k}(\alpha U)$$

Definition (*p***-adic** ζ **Function).** If *k* is a positive integer,

$$\zeta_p(1-k) := (1-p^{k-1})(-\frac{B_k}{k}) = \frac{1}{\alpha^{-k}-1} \int_{\mathbb{Z}_p^{\times}} x^{k-1} \mu_{1,\alpha}$$

Definition (*p***-adic** ζ **Function).** Fix $s_0 \in \{0, 1, 2, ..., p-2\}$. For $s \in \mathbb{Z}_p$ ($s \neq 0$ if $s_0 = 0$), we define

$$\zeta_{p,s_0} := \frac{1}{\alpha^{-(s_0 + (p-1)s)} - 1} \int_{\mathbb{Z}_p^{\times}} x^{s_0 + (p-1)s - 1} \mu_{1,\alpha}$$

Theorem. For fixed p and s_0 , $\zeta_{p,s_0}(s)$ is a continuous function of s which does not depend on the choice of $\alpha \in \mathbb{Z}$, $p \not\mid \alpha, \alpha \neq 1$.