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1 Introduction: p-adic Numbers
Before we start, I will mention that this presentation will be based on Professor Neal Koblitz’s books

on the subject. Here is a brief history of p-adic analysis given by him in his book:

Kummer and
Hensel

1850-
1900

Introduced p-adic numbers and developed basic properties

Minkowski 1884 Proved that an equation a1x
2
1 + . . . + anx

2
n = 0 is solvable in

the rational numbers if and only if it is solvable in the reals
and in the p-adic numbers for all primes p

Tate 1950 Fourier analysis on p-adic groups; pointed toward interrelations
between p-adic numbers and L-functions and representation
theory

Dwork 1960 Used p-adic analysis to prove the rationality of the ζ-function
of an algebraic variety defined over a finite field, part of teh
Weil conjectures

Kummer 1851 Congruences for Bernoulli numbers
Kubota-
Leapoldt

1964 Interpretation of Kummer congruences for Berknoulli numbers
using p-adic zeta-function

Iwasawa, Serre,
Mazur, Manin,
Katz, others

1960s-
1980s

p-adic theories for many arithmetically interesting functions

We start by introducing the p-adic numbers. To do this, we need a few definitions.
Definition (Metric). Let X be a nonempty set. A distance or metric on X is a function d : X×X →

R≥0 such that

1. d(x, y) = 0 if and only if x = y.

2. d(x, y) = d(y, x).

3. d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

Definition (Metric Space). A set X and a metric d together are called a metric space.
Generally, we work with X being a field, and our metrics will come from norms on the field, defined

as follows:
Definition (Norm). A norm on a field F is a map, denoted | |, from F to R≥0 such that

1. |x| = 0 if and only if x = 0.

2. |x · y| = |x| · |y|.
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3. |x+ y| ≤ |x|+ |y|.

Definition (vp, ordp). Let p be any prime number. For any nonzero integer a, let vp(a) be the largest
power of p which divides a.

Definition (p-adic Norm). Define the map | |p on Q as:

|x|p =


1

pvp(x)
x ̸= 0

0 x = 0

Proposition. | |p is a norm on Q.

Proof by checking the three properties.
We now classify norms:
Definition (Non-Archimedian Norms/Metrics). A norm is called non-Archimedian if |x + y| ≤

max(|x|, |y|) always holds. A metric is called non-Archimedian if d(x, y) ≤ max(d(x, z), d(z, y)).
We call norms and metrics that are not non-Archimedian as Archimedean. We can easily verify that

| |p is a non-Archimedian norm on Q.
Definition (Cauchy Sequence). In a metric space X, a Cauchy sequence (ak)k∈N of elements in X

is a sequence such that for all ϵ > 0, there exists N such that d(am, an) < ϵ whenever m,n > N .
Definition (Equivalence of Norms/Metrics). Two metrics d1 and d2 are equivalent if a sequence

is Cauchy with respect to d1 if and only if it is Cauchy with respect to d2. Two norms are equivalent
if their corresponding metrics are equivalent.

Theorem (Ostrowski’s Theorem). Every nontrivial norm | | on Q is equivalent to | |p for some
prime p or for p = ∞.

Remark. Here | |∞ denotes the regular absolute value. A trivial norm is a norm | | such that |0| = 0
and |x| = 1 for x ̸= 0.

Here is one more important theorem:

Theorem. In a metric space with a non-Archimedian metric, a sequence is Cauchy if ando nly if
the difference between adjacent terms approaches zero, and as a corollary if the metric space is also
complete, an infinite sum converges if and only if its general term approaches zero.

Now, let us take a look at how we will build up complex numbers from this new metric.

• Obtain Qp, the p-adic completion of Q, which we get by considering Cauchy sequences of rational
numbers.

• Perform an infinite sequence of field extensions to join solutions to higher degree polynomial equa-
tions, resulting in an algebraically closed field Qp.

• Unfortunately this is not complete, so we complete again to get Ω.

After performing the first step, the following theorem gives us a good feel for Qp:

Theorem. Every equivalence class a ∈ Qp for which |a|p ≤ 1 has exactly one representative Cauchy
sequence of the form {ai} for which

1. 0 ≤ ai < pi for i = 1, 2, 3, ....

2. ai ≡ ai+1 (mod pi) for i = 1, 2, 3, ....

We can extend this idea to all a ∈ Qp by first multiplying a by pm to get a p-adic number a′ = apm

satisfying |a′|p ≤ 1. We then get the following representation for elements of Qp:

a =
b0
pm

+
b1

pm−1
+ . . .+

bm−1

p
+ bm + bm+1p+ bm+2p

2 + . . .
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Definition (p-adic Integers). We define Zp = {a ∈ Qp : |a|p ≤ 1} to be the p-adic integers.

2 Analysis of Ω
Rather than show how Ω is constructed, for the purposes of this analysis course, it is more interesting

to proceed with some analysis of Ω. We start with power series. Analogously to Hadamard’s formula,
we define the radius of convergence of a power series as follows:

Definition (Radius of Convergence). Consider the expression

f(X) =

∞∑
n=0

anX
n

where an ∈ Ω for each n. When |anxn|p → 0, we can give f(x) the value
∑∞

n=0 anx
n. The radius of

convergence defined as
1

R
= lim sup |an|1/np .

It can then be shown that the series converges if |x|p < R and diverges when |x|p > R.

Theorem. If |x|p < R, f converges at x. If |x|p > R, f diverges at x.

Proof.
Consider |x|p = (1 − ϵ)R for ϵ > 0. Then |anxn|p = (|an|1/np )n(R(1 − ϵ))n, and since there are only

finitely many n such that |an|1/np >
1

R− 1
2ϵR

,

lim
n→∞

|anxn|p ≤ lim
n→∞

(
(1− ϵ)R

(1− 1
2ϵ)R

)n

= 0

Similarly, we can show that when |x|p > R, this limit is not zero. ■

Definition (Closed Disc). The closed disc of radius r ∈ R about a ∈ Ω is

Da(r) := {x ∈ Ω : |x− a|p ≤ r}

Definition (Open Disc). The open disc of radius r ∈ R about a ∈ Ω is

Da(r) := {x ∈ Ω : |x− a|p < r}

We also denote D(r) := D0(r) and D(r) := D0(r).

Remark. Da(r) and Da(r) are both simultaneously closed and open, so the above definitions are a
bit questionable topologically. We ware working in a “totally disconnected topological space”.

Here are some quick Lemmas that I will not show here:

Lemma. Every f(X) with p-adic integer coefficients converges in D(1).

Lemma. Every f(X) which converges in a disc D = D(r) or D(r) is continuous on D.

Remark. As an interesting warning, it is important to note that series of rational numbers may not
converge to the same rational number with respect to | |p and | |∞.

Definition (Differentiable). A function f : Ω → Ω is differentiable at a ∈ Ω if
f(x)− f(a)

x− a
ap-

proaches a limit in Ω as |x− a|p → 0.
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Definition (Locally Analytic). If a function can be represented by a convergent power series in a
neighborhood of any point in its region of definition, we say that it is locally analytic.

Theorem. If f(X) =
∑∞

n=0 anX
n is a power series, then it is differentiable at every point in its disc

of convergence, and it can be differentiated term by term. In particular, its derivative at a point a in
the disc of convergence is

∞∑
n=1

nana
n−1

Remark. There is a theory of integration on Ω, but I won’t discuss that today.

3 p-adic Distributions and The p-adic ζ Function
Before we consider the p-adic ζ Function, we have the following theorem:

Theorem.
ζ(2k) = (−1)kπ2k 22k−1

(2k − 1)!
(−B2k

2k
)

where B2k is the Bernoulli number.

This theorem motivates the study of the −B2k

2k
term. We again start with some definitions.

Definition (Interval). A set of the form a+ pNZp = {x ∈ Qp : |x− a|p ≤ (
1

pN
)} (denoted a+ (pN ))

for a ∈ Qp and N ∈ Z is called an interval.
Definition (Locally Constant). Let X And Y be two topological spaces. A map f : X → Y is called

locally constant if every point x ∈ X has a neighborhood U such that f(U) is a single element of Y .
Definition 1 (p-adic Distribution). A p-adic distribution µ is a Qp linear map from the Qp vector

space of locally constant functions on X to Qp. We denote µ(f) as
∫
fµ.

Definition 2 (p-adic Distribution). A p-adic distribution µ on X is an additive map from the set
of compact open sets in X to Qp. In other words, if U ⊆ X is the disjoint union of compact open sets
U1, U2, . . . , Un, then

µ(U) = µ(U1) + . . .+ µ(Un).

Proposition. Every map µ from the set of intervals contained in X to Qp for which µ(a+ (pN )) =∑p−1
b=0 µ(a+ bpN + (pN+1)) whenever a+ (pN ) ⊆ X extends uniquely to a p-adic distribution on X.

We will now take a look at the Bernoulli Distributions.
Definitions (Bernoulli Polynomials Bk(x)). Consider

text

et − 1
= (

∞∑
k=0

Bk
tk

k!
)(

∞∑
k=0

(xt)k

k!
)

Collecting the terms for tk, for each k we obtain a polynomial in x. Bk(x) the Bernoulli polynomial is
defined to be k! times this polynomial.

Definition. µB,k(a+ (pN )) := pN(k−1)Bk(
a

pN
).

Using the previous proposition,

Proposition. µB,k extends to a distribution on Zp called the "kth" Bernoulli distribution.
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Example. The first few Bernoulli distributions are

µB,0(a+ (pN )) = p−N

which is called the Haar distribution,

µB,1(a+ (pN )) = B1(
a

pN
) =

a

pN
− 1

2

which is called the Mazur distribution, and

µB,2(a+ (pN )) = pN (
a2

p2N
− a

pN
+

1

6
)

Now a full consideration of this subject would take far too long, so I will simply summarize various
pieces.

Definition (Measure). A p-adic distribution µ on X is a measure if its value on compact open
U ⊆ X are bounded by some constant B ∈ R.

To make the Bernoulli distributions measures, we perform a process called regularization and define:
Definition (Regularized Bernoulli Distribution). Denoted by µk,α or µB,k,α,

µk,α(U) := µB,k(U)− α−kµB,k(αU)

Definition (p-adic ζ Function). If k is a positive integer,

ζp(1− k) := (1− pk−1)(−Bk

k
) =

1

α−k − 1

∫
Z×
p

xk−1µ1,α.

Definition (p-adic ζ Function). Fix s0 ∈ {0, 1, 2, ..., p− 2}. For s ∈ Zp (s ̸= 0 if s0 = 0), we define

ζp,s0 :=
1

α−(s0+(p−1)s) − 1

∫
Z×
p

xs0+(p−1)s−1µ1,α

Theorem. For fixed p and s0, ζp,s0(s) is a continuous function of s which does not depend on the
choice of α ∈ Z, p ̸ | α, α ̸= 1.
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