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Abstract

This tutorial treats the fundamentals of polarization theory and polar
coding. Arıkan’s original results on binary source and channel polar-
ization methods are studied. Error probability and complexity analyses
are offered. The original results are generalized in several directions.
Early developments in the field are discussed, pointers to some of the
important work omitted from this tutorial are given.



1
Introduction

Figure 1.1 depicts the setting for the fundamental problem in communi-
cation theory. A sender has K bits of information to send, which, after
appropriate processing, are transmitted through a noisy channel that
accepts input symbols one at a time and produces a sequence of output
symbols. The task of the communication engineer is to design an encod-
ing/decoding scheme that ensures that the K bits are (i) transmitted
in as few uses of the channel as possible, and (ii) correctly reproduced
at the receiver with as high a probability as desired. In [42], Shannon
showed that these seemingly conflicting requirements can be met simul-
taneously so long as K and N (the number of channel uses) are large
and K/N (called the rate of transmission) is below the capacity of the
channel.

Shannon’s proof of the channel coding theorem shows not only that
reliable communication at rates below capacity is possible, but also
that almost all encoding schemes, i.e., channel codes, with rates below

Fig. 1.1
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channel capacity will perform well as long as optimal decoders are
used at the receiver. Unfortunately, optimal decoding is in general pro-
hibitively difficult — its complexity grows exponentially in the coding
length — and how to construct practical coding schemes, and especially
low-complexity decoders, is not immediately clear from Shannon’s cod-
ing theorem alone.

Significant progress has been made in the past sixty years toward
developing practical and capacity-achieving coding methods. The bulk
of the research effort to this end can be broadly divided into two groups:
algebraic coding and iterative coding. Research in algebraic coding was
motivated primarly by the recognition that for channels of practical
interest, the words of a code must be as different from each other as
possible in order to ensure their distinguishability at the receiver. Iter-
ative codes (e.g., Turbo codes and LDPC codes), on the other hand,
are designed to work well with a low-complexity decoding algorithm.
Despite remarkable advances in both fields, especially in iterative cod-
ing, finding codes that (i) operate at rates close to capacity, (ii) have
low computational complexity, and (iii) have provable reliability guar-
antees was an elusive goal until recently.1

Polar codes, invented recently by Arıkan [4], have all of these desir-
able properties. In particular,

• they achieve the symmetric capacity of all binary-input mem-
oryless channels. Consequently, they are capacity-achieving
for symmetric channels, which include several channel classes
of practical relevance such as the binary-input additive white
Gaussian noise channel, the binary symmetric channel, and
the binary erasure channel.

• they are low-complexity codes, and therefore are practical:
the time and space complexities of the encoding/decoding
algorithms Arıkan proposes in [4] are O(N logN), where N

is the blocklength.
• the block error probability of polar codes is roughly

O(2−√
N ) [9]. This performance guarantee is analytical, and

is not only based on empirical evidence.

1 See [12] for a historical account of the development of coding theory in general.
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• for symmetric channels, polar code construction is determin-
istic. That is, the above statements are true not only for
ensembles of codes, but also for individual polar codes. Fur-
ther, construction of polar codes can be accomplished with
time complexity O(N) and space complexity O(logN) [45].

The design philosophy of polar codes is fundamentally different from
those of both algebraic codes and iterative codes (although the codes
themselves are closely related to the algebraic Reed–Muller codes). It is
interesting to note that the invention of these codes is the culmination
of Arıkan’s efforts to improve the rates achievable by convolutional
codes and sequential decoding [6], a decoding method developed in the
late 1950s.

The technique underlying polar codes is ‘channel polarization’: cre-
ating extremal channels — those that are either noiseless or useless —
from mediocre ones. Soon after the publication of [4], Arıkan showed
that a similar technique can be used to construct optimal source codes
[5] — he calls this technique ‘source polarization’. It is clear in his work
that a single polarization principle underlies both techniques; channel
polarization and source polarization are specific applications of this
principle.

1.1 Extremal Distributions and Polarization

Suppose we are interested in guessing (i.e., decoding) the value of
a binary N -vector UN

1 after observing a related random vector Y N
1 .

Here, UN
1 may represent a codeword chosen randomly from a channel

code, and Y N
1 the output of a channel when UN

1 is the input. Alterna-
tively, UN

1 may be viewed as the output of a random source, and Y N
1

as side information about UN
1 . In order to minimize the probability of

decoding error, one chooses the value of UN
1 that maximizes2

p(uN
1 | yN

1 ) =
N∏

i=1

p(ui | yN
1 ,ui−1

1 ).

2 Throughout, we will denote probability distributions by p as long as their arguments
are lower case versions of the random variables they represent. For example, we will write
p(x,y | z) for pXY |Z(x,y | z), denoting the joint distribution of X and Y conditioned on Z.
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There are two extremal cases in terms of the probability of decoding
error. First, if UN

1 is a function of Y N
1 — i.e., if the above probability is

either 0 or 1 — then its value can always be guessed correctly. Second,
if UN

1 is independent of Y N
1 and uniformly distributed, then all guesses

are equally good and will be correct with probability 1/2N . The first
of these cases is trivial provided that the function computations can be
done easily, and the second is hopeless.

A more interesting extremal case is one in which the conditional
distribution of UN

1 is neither {0,1}-valued nor uniform, but it is polar-
ized in the sense that all distributions in the product formula above
are either {0,1}-valued or uniform. One can view this as a case where
all randomness in UN

1 is concentrated in a subset of its components.
Clearly, one cannot in general correctly decode such a random vector
with high probability. On the other hand, decoding UN

1 again becomes
trivial if one has prior knowledge of its random component. The polar-
ized structure in the probability distribution even suggests that UN

1 can
be decoded successively : suppose, for the sake of argument, that the
odd-numbered factors in the product formula above are {0,1}-valued
distributions whereas the even-numbered factors are uniform. Then,
if one has prior knowledge of the even indices of UN

1 , then the odd
indices can be determined in increasing order as follows. The decoder
first computes U1 as a function of Y N

1 , then produces U2 (which is
already available to it) then uses its knowledge of U1 and U2 to com-
pute U3 as a function of (Y N

1 ,U2
1 ), etc.

A realistic model of the input/output process of a noisy channel
or the output/side information process of a data source rarely fits this
description. On the other hand, one may attempt to transform the pro-
cess in question into one that does fit it. This is precisely the aim of
Arıkan’s polarization technique. In its original form, this technique con-
sists in combining two identically distributed binary random variables
so as to create two disparate random variables and repeating this oper-
ation several times to amplify the disparity, eventually approaching a
polarized set of random variables. We will see this technique along with
how to apply it to channel and source coding in Section 2. In Section 3
we will review the complexity of polar encoding, decoding, and code
construction. As we have already mentioned, the practical appeal of
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polar codes is due to the low complexity requirements of these tasks
along with provable reliability guarantees.

There has been considerable amount of research effort in polar-
ization theory and polar coding since the publication of [4] in 2009.
Arguably the main reason for this interest is the technique’s ease of
applicability to settings other than binary source and channel coding.
In the rest of this monograph (Sections 4–6), we will review some of
the main generalizations of the theory. We will begin in Section 4 by
studying how discrete memoryless processes of arbitrary alphabet sizes,
not just binary ones, can be polarized by recursive transforms. We will
see that this can be accomplished through a linear transform similar
to Arıkan’s when the alphabet size is prime. Interestingly, linear trans-
forms lose their ability to polarize all stationary memoryless processes
when the underlying alphabet size is not a prime number. There are,
however, non-linear transforms that do polarize all stationary memory-
less processes for all finite alphabet sizes. In Section 4.2 we will study
sufficient conditions for a recursive transform to polarize all such pro-
cesses, and give an example of a family of transforms that satisfy these
conditions for all finite alphabet sizes. The complexity and the error
probability behavior of codes obtained by such transforms will be as in
the binary case.

While the error probability guarantees of polar codes are unprece-
dented, it is of interest to know whether even stronger codes can be
obtained by combining more than two random variables in each recur-
sion of a polarizing construction. This study is undertaken in Section 5:
we will first show that a large class of recursive linear transforms that
combine several random variables at a time polarize memoryless pro-
cesses with prime alphabet sizes. We will then characterize how a single
recursion of a given polarizing transform affects error probability behav-
ior, from which results on the large-blocklength behavior follow easily.
The implications of this characterization are of a mixed nature: while
in the binary case one cannot improve on the O(2−√

N ) error probabil-
ity decay by combining a small number of random variables at a time,
strong improvements become possible as the alphabet size grows.

In Section 6, we will make use of the polarization theorems of earlier
sections to study joint polarization of multiple processes. We will see
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that recursive transforms, applied separately to multiple processes, not
only polarize the individual processes, but the correlations between
the processes are also polarized. These results will immediately lead
to polar coding theorems for two-user settings such as the separate
encoding of correlated sources and the multiple-access channel.



2
Polarization and Polar Coding

In this section, we will review the polarization method for binary mem-
oryless processes and show how it can be used to obtain channel and
source codes that achieve optimal rates. Owing to the recursive nature
of these codes, the techniques for analyzing their performance (rate,
error probability, complexity) are fairly simple. In the subsequent sec-
tions we will frequently invoke the techniques discussed here. This
section is based entirely on [4], [5], and [9].

Consider a pair of discrete random variables (X,Y ) with X ∈
{0,1} and Y ∈ Y. The alphabet Y and the joint distribution of
(X,Y ) may be arbitrary. Suppose we are given N independent copies
(X1,Y1),(X2,Y2), . . . ,(XN ,YN ) of (X,Y ). We may view XN

1 as the out-
put of a binary memoryless source, and Y N

1 as side information about
XN

1 . Alternatively, we may interpret XN
1 as independent and identi-

cally distributed (i.i.d.) inputs to a binary-input memoryless channel,
and Y N

1 as the corresponding output. We will initially focus on the first
of these interpretations and discuss the second shortly.

Suppose that a receiver observes Y N
1 and is interested in decoding

XN
1 . We know that in addition to Y N

1 , it is necessary and sufficient to
provide the receiver with approximately H(XN

1 | Y N
1 ) = NH(X1 | Y1)

266
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bits of information1 about XN
1 for it to decode with small error

probability. As we mentioned in Section 1, there are two cases where
decoding is a trivial task: First, if H(X1 | Y1) = 0, the receiver can
decode XN

1 with no other information than Y N
1 and make no errors.

Second, if H(X1 | Y1) = 1, any strategy short of providing XN
1 itself to

the receiver — this would render the receiver’s task trivial — will result
in unreliable decoding.

Arıkan’s polarization technique is a method that transforms the
XN

1 sequence so as to reduce the decoder’s task into a series of these
two trivial tasks. While any good source or channel code can in fact
be thought of in this way,2 Arıkan’s technique yields low-complexity
encoding and decoding algorithms due to its recursive nature.

2.1 A Basic Transform

In this section we review a single step of the polarization technique.
Although the reader may find some of the details here trivial, we find
it worthwhile to go through them since most polarization ideas are
contained in the one-step construction.

Consider the case N = 2. Given (X1,Y1) and (X2,Y2), we define
S1,S2 ∈ {0,1} through the mapping (see Figure 2.1)

S1 = X1 + X2 and S2 = X2, (2.1)

where ‘+’ denotes modulo-2 addition. Notice that the correspon-
dence between S1,S2 and X1,X2 is one-to-one, and therefore the

Fig. 2.1 The first step of the recursive construction. The distribution on (S1,S2) is induced
by the distribution on (X2

1 ,Y 2
1 ).

1 Logarithms in this section are to the base 2, and thus entropies of binary random variables
are [0,1]-valued.

2 A brief discussion on this is offered in the introduction of Section 5.
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independence of (X1,Y1) and (X2,Y2) implies

2H(X1 | Y1) = H(S2
1 | Y 2

1 ) = H(S1 | Y 2
1 ) + H(S2 | Y 2

1 S1).

It easily follows from (2.1) and the above equalities that

H(S2 | Y 2
1 S1) ≤ H(X1 | Y1) ≤ H(S1 | Y 2

1 ). (2.2)

Due to these entropy relations, one intuitively expects that observing
(Y 2

1 S1) yields a more reliable estimate of S2 (i.e., X2) than observing Y2

alone does. (It is in fact clear that the ‘channel’ S2 → Y 2
1 S1 is upgraded

with respect to the channel X2 → Y2.) Similarly, observing Y 2
1 alone

leads to a less reliable estimate of S1. If we let Pe(X1 | Y1) denote the
average error probability of optimally decoding X1 by observing Y1, we
indeed have

Pe(S2 | Y 2
1 S1) ≤ Pe(X1 | Y1) ≤ Pe(S1 | Y 2

1 ). (2.3)

The left-hand inequality above is obtained through the relations

Pe(S2 | Y 2
1 S1) ≤ Pe(S2 | Y2) = Pe(X1 | Y1)

and the right-hand inequality through

Pe(X1 | Y1) = Pe(X1 + X2 | Y1X2)

= Pe(X1 + X2 | Y 2
1 X2)

≤ Pe(X1 + X2 | Y 2
1 ).

The second equality above is due to the Markov chain (X1 + X2)–
Y1X2–Y2.

One can see the use of these relations in the following coding scheme:
upon observing X2

1 , the encoder computes S2
1 and reveals S1 to the

receiver. The receiver then uses the optimal decision rule to decode S2

from (Y 2
1 S1), and computes (X̂1, X̂2) = (S1 + Ŝ2, Ŝ2), where Ŝ2 is its

estimate of S2.
This is in fact the simplest instance of polar source coding, with

code blocklength 2, rate 1/2, and average block error probability
Pe(S2 | Y 2

1 S1). Simple as it is, this scheme contains the essence of
polarization and polar coding ideas: out of two identical entropy terms
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H(X1 | Y1) and H(X2 | Y2), we have created two different entropies
one of which is closer to 0 than the original and the other closer to 1,
thereby approaching (albeit not very closely) the trivial cases we men-
tioned above. By revealing to the decoder those random variables with
high conditional entropies, we can decode with higher reliability those
that have lower entropies.

2.2 An Improved Transform and Coding Scheme

Since the random variables S1 and S2 created by the above transform
are {0,1}-valued, one can apply the same transform to these in order
to enhance the disparity between their entropies. How this can be done
is depicted in Figure 2.2: set N = 4 and define, in addition to S1,S2

in (2.1),

T1 = X3 + X4 and T2 = X4,

and also define Ỹ1 = Y 2
1 and Ỹ2 = Y 4

3 . Observe that (S1, Ỹ1) and (T1, Ỹ2)
are i.i.d., just as were (X1,Y1) and (X2,Y2). It then follows similarly to
(2.2) that

H(T1 | Ỹ 2
1 ,S1 + T1) ≤ H(S1 | Ỹ1) ≤ H(S1 + T1 | Ỹ 2

1 ). (2.4)

Similarly, defining Ȳ1 = (Y 2
1 S1) and Ȳ2 = (Y 4

3 T1) and noting that
(S2, Ȳ1) and (T2, Ȳ2) are also i.i.d., we have

H(T2 | Ȳ 2
1 ,S2 + T2) ≤ H(S2 | Ȳ1) ≤ H(S2 + T2 | Ȳ 2

1 ). (2.5)

Fig. 2.2 Recursive two-step transform.
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The relevance of the entropy terms above can be seen by an inspection
of Figure 2.2. In particular, we have

4H(X1 | Y1) = 2H(S2
1 | Y 2

1 )

= H(U4
1 | Y 4

1 )

= H(U1 | Y 4
1 ) + H(U2 | Y 4

1 U1)

+H(U3 | Y 4
1 U2

1 ) + H(U4 | Y 4
1 U3

1 ).

It is also easily seen that the last four entropy terms above are those
appearing in (2.4) and (2.5):

H(U1 | Y 4
1 ) = H(S1 + T1 | Ỹ 2

1 )

H(U2 | Y 4
1 U1) = H(T1 | Ỹ 2

1 ,S1 + T1)

H(U3 | Y 4
1 U2

1 ) = H(S2 + T2 | Y 4
1 S1T1) = H(S2 + T2 | Ȳ 2

1 )

H(U4 | Y 4
1 U3

1 ) = H(T2 | Y 4
1 S1T1,S2 + T2) = H(T2 | Ȳ 2

1 ,S2 + T2).

It follows from these relations, along with (2.4) and (2.5), that

H(U2 | Y 4
1 U1) ≤ H(S1 | Y 2

1 ) ≤ H(U1 | Y 4
1 )

H(U4 | Y 4
1 U3

1 ) ≤ H(S2 | Y 2
1 S1) ≤ H(U3 | Y 4

1 U2
1 ).

That is, from the two entropy terms H(S1 | Y 2
1 ) and H(S2 | Y 2

1 S1) we
obtain four new entropies that are separated from the original two
as in the above inequalities. There is no general inequality between
H(U2 | Y 4

1 U1) and H(U3 | Y 4
1 U2

1 ). Nevertheless, since H(S1 | Y 2
1 ) and

H(S2 | Y 2
1 S1) were already somewhat polarized toward 1 and 0, the

above inequalities say that the polarization effect is enhanced by the
second application of the transform.

Consider now the following source code of blocklength 4: We choose
a set A ⊂ {1,2,3,4} with |A| = 4 − k. Upon observing X4

1 = x4
1, the

encoder computes U4
1 = u4

1 and sends all ui, i ∈ Ac to the decoder, there-
fore the rate of the code is k/4 bits/symbol. The decoder outputs its
estimate û4

1 of u4
1 successively as

ûi =




ui, if i ∈ Ac

0, if i ∈ A and L(y4
1, û

i−1
1 ) > 1

1, otherwise

, (2.6)
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where

L(y4
1,u

i−1
1 ) =

pUi|Y 4
1 U i−1

1
(0 | y4

1, û
i−1
1 )

pUi|Y 4
1 U i−1

1
(1 | y4

1, û
i−1
1 )

. (2.7)

The probability functions above are those that describe the
entropies H(Ui | Y 4

1 U i−1
1 ). One may therefore expect that the above

scheme perform well if the set A consists of bits with the smallest con-
ditional entropies (i.e., the highest reliabilities). A similar and sensible
choice of set A is the following:

i ∈ A and j ∈ Ac imply Pe(Ui | Y 4
1 U i−1

1 ) ≤ Pe(Uj | Y 4
1 U j−1

1 )

This choice can be justified by the following result:

Proposition 2.1. The average block error probability of the above
coding scheme is at most∑

i∈A
Pe(Ui | Y 4

1 U i−1
1 ). (2.8)

Proof. Consider a decoder with output ũN
1 , whose decision rule for ũi

is obtained from (2.6) by replacing L(y4
1, û

i−1
1 ) with L(y4

1,u
i−1
1 ). This

is a genie-aided version of the original decoder: at each step of decod-
ing, a genie provides the decoder with the correct value of the pre-
viously decoded bits. Clearly, the average error probability of the ith
constituent of this decoder is Pe(Ui | Y 4

1 U i−1
1 ), and therefore the block

error probability is upper bounded by the expression in (2.8). In order
to conclude the proof, we will now show that the block error events
for the original decoder described in (2.6) and (2.7) and its genie-aided
version are identical.

Note that û1 = ũ1 for each realization (y4
1,u

4
1), as both decisions

depend on L(y4
1) alone. Hence, if û1 = ũ1 = u1 (otherwise both decoders

commit a block error in the first step), it then follows that û2 = ũ2, as
both decisions are now based on L(y4

1,u1). Continuing in this manner,
we see that at each step, either both decoders have already committed
an error, or their next decisions will be identical. This in turn implies
that the block error events (but not necessarily the bit error events)
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under the original decoder and its genie-aided version are identical,
yielding the claim.

Proposition 2.1 highlights two simple but important aspects of the
design and analysis of polar codes (of which the above code is an
instance). First, the block error probability behavior of these codes
can be deduced from the error behavior of the created ‘channels’ (e.g.,
channels Ui → Y 4

1 U i−1
1 above), which as we will see greatly simplifies

error analysis. Second, minimizing the upper bound in (2.8) amounts to
finding a good code, as it consists in determining the bit indices with
the smallest probability of decoding error. This is one of the several
appeals of polar codes: their design and construction on one hand and
analysis on the other are closely linked and do not require separate
techniques.

2.3 Recursive Construction: Polarization

We saw the first two steps of Arıkan’s construction in the previous
sections. The recursive nature of this construction is evident; the second
step merely involves applying the transform in (2.1) to the random
variables obtained in the first. Similarly in the general form of this
construction, each recursion consists in applying (2.1) to the random
variables obtained in the previous one. For this technique to create the
desired effect of driving the entropies close to 0 and 1, it is therefore
necessary that the basic transform in (2.1) lead to a strict separation of
entropies, i.e., that the inequalities in (2.2) be strict, for otherwise the
transform would have no effect. The following result guarantees that
this requirement is always met, except in trivial cases.

Lemma 2.2. Let (X1,Y1) and (X2,Y2) be independent pairs of discrete
random variables with X1,X2 ∈ {0,1}, H(X1 | Y1) = α, and H(X2 |
Y2) = β for some α,β ∈ [0,1]. The entropy H(X1 + X2 | Y 2

1 )

(i) is minimized when H(X1 | Y1 = y1) = α,H(X2 | Y2 = y2) = β

for all y1,y2 with p(y1),p(y2) > 0.
(ii) is maximized when H(X1 | Y1 = y1),H(X2 | Y2 = y2) ∈ {0,1}

for all y1,y2 with p(y1),p(y2) > 0.
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It also follows from (i) that if α,β ∈ (δ,1 − δ) for some δ > 0, then there
exists ε(δ) > 0 such that

H(X1 + X2 | Y 2
1 ) − H(X1 | Y1) ≥ ε(δ).

Proof. See Appendix 2.A.

We can now describe the general form of the polarization construc-
tion: let (X1,Y1),(X2,Y2), . . . be an i.i.d. sequence as above. For n =
0,1, . . . , set N = 2n and define a sequence of transforms Gn : {0,1}N →
{0,1}N recursively through

G0(u) = u,

Gn(u1,u2) = πn(Gn−1(u1) + Gn−1(u2),Gn−1(u2)), n = 1,2, . . .

where u1,u2 ∈ {0,1}N/2 and πn : {0,1}N → {0,1}N permutes the com-
ponents of its argument vector through

πn(v)2i−1 = vi

πn(v)2i = vi+N/2
, i = 1, . . . ,N/2.

It is easy to show [4] that Gn is one-to-one and that G−1
n = Gn. Now

define

UN
1 = Gn(XN

1 ).

The general form of the transform Gn is shown in Figure 2.3. The inclu-
sion of πn in the definition of Gn is not necessary for the polarization
technique to work, but it will greatly simplify the notation. One can
verify that G1 and G2 are equivalent to the transforms in the previous
sections (Figures 2.1 and 2.2).

The main result in [4] and [5] is that as the construction size N

grows, the entropies H(Ui | Y N
1 U i−1

1 ) approach either 0 or 1:

Theorem 2.3. For all ε > 0,

lim
n→∞

1
N

|{i : H(Ui | Y N
1 U i−1

1 ) > 1 − ε}| = H(X | Y ),

lim
n→∞

1
N

|{i : H(Ui | Y N
1 U i−1

1 ) < ε}| = 1 − H(X | Y ).
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Fig. 2.3 Two copies of the (n − 1)-step polarization transform Gn−1 are combined to obtain
the n-step transform Gn.

In order to simplify the notation in the proofs, we will often use the
following definition.

Definition 2.1. For i.i.d. (X1,Y1) and (X2,Y2) with H := H(X1 | Y1),
we define

H− := H(X1 + X2 | Y 2
1 ),

H+ := H(X2 | Y 2
1 ,X1 + X2).

(2.9)

With the above definitions, we claim that

H(U1 | Y N
1 ) = H−···−−

H(U2 | Y N
1 U1) = H−···−+

H(U3 | Y N
1 U2

1 ) = H−···+−

...

H(UN−1 | Y N
1 UN−2

1 ) = H+···+−

H(UN | Y N
1 UN−1

1 ) = H+···++,

(2.10)

where the superscripts on the right-hand terms are of length n. These
equivalences can be verified by an inspection of Figure 2.3. In partic-
ular, let us suppose that the equalities in (2.10) hold for the entropy
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terms obtained after Gn−1, so that for every 1 ≤ i ≤ N/2 there is a
distinct s ∈ {−,+}n−1 such that H(Si | Y

N/2
1 Si−1

1 ) = Hs. Then, since
the pairs (Si,Y

N/2
1 Si−1

1 ) and (Ti,Y
N
N/2+1T

i−1
1 ) in the figure are i.i.d., it is

easily seen that H(U2i−1 | Y N
1 U2i−2

1 ) = H(Si | Y
N/2
1 Si−1

1 )− = Hs−, and
that H(U2i | Y N

1 U2i−1
1 ) = H(Si | Y

N/2
1 Si−1

1 )+ = Hs+. It follows that for
every i ∈ {1, . . . ,N} there is a distinct s ∈ {−,+}n such that H(Ui |
Y N

1 U i−1
1 ) = Hs. It also follows from the definition of the permutation

function πn that these equivalences are as in (2.10). Since we have
already seen in Section 2.1 that (2.10) holds for n = 1, it follows by
induction that it holds for all n.

In order to prove Theorem 2.3 we define an i.i.d. process B1,B2, . . .

where B1 is uniformly distributed over {−,+}. We then define a [0,1]-
valued random process H0,H1, . . . recursively as

H0 = H(X1 | Y1),

Hn = HBn
n−1, n = 1,2, . . .

(2.11)

As B1, . . . ,Bn is uniformly distributed over {−,+}n, the entropy
equivalences in (2.10) imply that for all n,

Pr[Hn ∈ I] =
1
N

|{i : H(Ui | Y N
1 U i−1

1 ) ∈ I}|

for any I ⊆ [0,1]. Therefore, Theorem 2.3 is implied by

Theorem 2.4. Hn converges almost surely to a {0,1}-valued random
variable H∞ with Pr[H∞ = 1] = 1 − Pr[H∞ = 0] = H(X1 | Y1).

Proof. Definitions (2.9) and (2.11) imply that H−
n + H+

n = 2Hn. It fol-
lows that the process H1,H2, . . . is a bounded martingale and there-
fore converges almost surely to a random variable H∞. As almost
sure convergence implies convergence in L1, we have E[|Hn+1 −
Hn|] = 1

2E[H−
n − Hn] + 1

2E[Hn − H+
n ] = E[H−

n − Hn] → 0. Also since
Lemma 2.2 implies that H−

n − Hn > δ(ε) if Hn ∈ (ε,1 − ε), it follows
that Hn → {0,1} with probability 1, i.e., that H∞ is {0,1}-valued.
The claim on the distribution of H∞ then follows from the relation
E[H∞] = E[H0] = H(X1 | Y1).
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This is the main polarization theorem. It states that Arıkan’s
construction distills the randomness in an i.i.d. binary process into a
sequence of uniform or constant binary random variables. Equivalently,
this construction can be interpreted as one that creates a sequence of
noiseless and useless channels Ui → Y N

1 U i−1
1 out of several copies of a

memoryless channel X1 → Y1.
Theorem 2.3 can be exploited to construct entropy-achieving polar

source codes as follows: Fix δ,ε > 0 and find the set

A := {i : Pe(Ui | Y N
1 U i−1

1 ) ≤ ε}.

As H(Ui | Y N
1 U i−1

1 ) → 0 implies Pe(Ui | Y N
1 U i−1

1 ) → 0, it follows from
Theorem 2.3 that A must be of size at least (1 − H(X | Y ) − δ)N pro-
vided that the blocklength N is sufficiently large. The encoder observes
XN

1 , computes UN
1 = Gn(XN

1 ), and reveals Ui, i ∈ Ac to the receiver,
therefore the code is of rate H(X | Y ) + δ. Upon observing Y N

1 and
Ui, i ∈ Ac, the receiver decodes UN

1 successively as in (2.6) and (2.7).
Similarly to the previous section, the block error probability of this
code is at most ∑

i∈A
Pe(Ui | Y N

1 U i−1
1 ) ≤ εN.

This bound on the error probability is not very useful, however, as
we have chosen the threshold ε independently of N . Fortunately, the
choice of set A in the above scheme can be modified slightly to include
a blocklength-dependent ε, yielding codes with vanishing block error
probability. More precisely, instead of A consider the set

A′
β := {i : Pe(Ui | Y N

1 U i−1
1 ) ≤ 2−Nβ}

for some β > 0. Note that for large N we have A′
β ⊂ A. The next

result states that as long as β < 1/2, the set difference A\A′
β is

negligibly small, in the sense that |A′
β|/|A| → 1. That is, at large

blocklengths if the bit error probability Pe(Ui | Y N
1 U i−1

1 ) is small,
then it must indeed be exponentially small in the square root of the
blocklength.
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Theorem 2.5. For all β < 1/2 and δ > 0, there exists No = No(β,δ)
such that

|A′
β| > (1 − H(X | Y ) − δ)N

for all N ≥ No.

Corollary 2.6. For all β < 1/2 and rates strictly above H(X | Y ), the
average block error probability of the above source coding scheme is
o(2−Nβ

).

In order to prove Theorem 2.5 one needs to compute the error
probability terms Pe(Ui | Y N

1 U i−1
1 ) that emerge during the polarization

process. The difficulty in doing so is that the joint distributions of
(Ui,Y

N
1 U i−1

1 ) become increasingly complex as the blocklength grows,
and consequently the exact computation of error probabilities becomes
intractible. One may hope instead to find useful bounds on the error
probabilities that are also independent of the details of the joint
distributions. For this purpose, consider a [0,1]-valued parameter
Z(X | Y ) defined as

Z(X | Y ) = 2
∑
y∈Y

√
pXY (0,y)pXY (1,y).

Arıkan calls Z(X | Y ) the source Bhattacharyya parameter [5]. It is
well-known that the Bhattacharyya parameter upper bounds the error
probability of the optimal decision rule, and therefore may be used as
a measure of reliability:

Proposition 2.7. Pe(X | Y ) ≤ Z(X | Y ).

Proof.

Pe(X | Y ) ≤ pX(0)
∑

y

p(y | 0) [p(0|y)≤p(1|y)]

+pX(1)
∑

y

p(y | 1) [p(1|y)≤p(0|y)]
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≤ pX(0)
∑

y

p(0 | y)p(y)
pX(0)

√
p(1 | y)√
p(0 | y)

+pX(1)
∑

y

p(1 | y)p(y)
pX(1)

√
p(0 | y)√
p(1 | y)

= 2
∑

y

√
p(0,y)p(1,y)

= Z(X | Y ).

As a measure of reliability, it would be natural for Z(X | Y ) to
satisfy

Z(X | Y ) ≈ 1 if and only if H(X | Y ) ≈ 1,

Z(X | Y ) ≈ 0 if and only if H(X | Y ) ≈ 0.

The following relations show that this is indeed the case:

Proposition 2.8.

Z(X | Y )2 ≤ H(X | Y )

H(X | Y ) ≤ log(1 + Z(X | Y )).

We defer the proof until Section 4, where we show a more gen-
eral result for a generalized definition of the Bhattacharyya parameter
(Proposition 4.8).

One may expect to observe a disparity between the Bhattacharyya
parameters after one step of the polarization transform, similar to the
disparity between the entropies (2.2) and the error probabilities (2.3).
We indeed have

Z(U2 | Y 2
1 U1) ≤ Z(X1 | Y1) ≤ Z(U1 | Y 2

1 ).

The reader can verify that these inequalities are strict unless Z(X1 | Y1)
is either 0 or 1. Clearly, the exact values of these parameters depend
on the details of the joint distribution of (X1,Y1). Nevertheless, there
are bounds on these that are distribution-independent and are also
sufficiently good for proving Theorem 2.5:
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Lemma 2.9. For all (X1,Y1), we have

Z(U1 | Y 2
1 ) ≤ 2Z(X1 | Y1), (2.12)

Z(U2 | Y 2
1 U1) = Z(X1 | Y1)2. (2.13)

Proof. First note that p(u1,u2,y1,y2) = pXY (u1 + u2,y1)pXY (u2,y2).
The first bound can be seen through the following inequalities:

Z(U1 | Y 2
1 ) = 2

∑
y2
1

[∑
u2

pXY (u2,y1)pXY (u2,y2)

·
∑
v2

pXY (1 + v2,y1)pXY (v2,y2)

]1/2

≤ 2
∑

y2
1 ,u2,v2

[pXY (u2,y1)pXY (1 + v2,y1)

·pXY (u2,y2)pXY (v2,y2)]1/2

= 2
∑
u2,v2

∑
y1

[pXY (u2,y1)pXY (1 + v2,y1)]1/2

·
∑
y2

[pXY (u2,y2)pXY (v2,y2)]1/2

The term inside the outermost summation is equal to p(u2)Z(X1 | Y1)/2
for all u2,v2. This yields the first claim. To obtain the second claim we
write

Z(U2 | Y 2
1 U1) = 2

∑
y2
1 ,u1

[pXY (u1,y1)pXY (0,y2)

·pXY (u1 + 1,y1)pXY (1,y2)]1/2

= 2
∑
u1

∑
y1

[pXY (u1,y1)pXY (u1 + 1,y1)]1/2

·
∑
y2

[pXY (0,y2)pXY (1,y2)]1/2
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= 4

[∑
y

[pXY (0,y)pXY (1,y)]1/2

]2

= Z(X1 | Y1)2.

In order to prove Theorem 2.5, we will define, similarly to the proof
of Theorem 2.3, a random process that mirrors the behavior of the
Bhattacharyya parameters obtained during the polarization construc-
tion. For this purpose, we first let Z := Z(X1 | Y1) and define

Z− := Z(U1 | Y 2
1 ),

Z+ := Z(U2 | Y 2
1 U1).

We will see that bounds (2.12) and (2.13) on Z− and Z+ suffice to
prove Theorem 2.5. To get an initial idea about the reason for this, let
us neglect, for a moment, the factor 2 in the bound (2.12) on Z−. It is
now easy to see that on a ‘polarization path’ consisting of n consecutive
‘+’ and ‘−’ operations, the resulting Z(Ui | Y N

1 U i−1
1 ) will be upper

bounded by Z(X | Y )2
np , where np is the number of the occurrences of

‘+’. Since on a typical path the plus and the minus operations occur
with roughly the same frequency, i.e., np ≈ n/2, it follows that most
Bhattacharyya parameters will be of the form Z(Ui | Y N

1 U i−1
1 ) ≈ Z(X |

Y )2
n/2

= Z(X | Y )
√

N , as claimed in Theorem 2.5.
The reason for us to resort to Bhattacharyya parameters instead of

working directly with error probabilities is the lack of useful bounds on
the latter. More precisely, although we have

Pe(U2 | Y 2
1 U1) ≤ Pe(X1 | Y1) ≤ Pe(U1 | Y 2

1 )

after the first step of polarization, how close these error terms are to
each other depends strongly on the distribution of (X1,Y1). In partic-
ular, it can easily be verified that if X1 is uniformly distributed and Y1

is the output of a binary symmetric channel whose input is X1, then
the left-hand bound above is satisfied with equality. In other words,
the tightest upper bound on Pe(U2 | Y 2

1 U1) in terms of Pe(X1 | Y1)
only (i.e., independent of the particular distribution of X1 and Y1) is

Pe(U2 | Y 2
1 U1) ≤ Pe(X1 | Y1).

Comparing this with (2.13) reveals the advantage of using the latter.
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We will prove Theorem 2.5 as a corollary to Lemma 2.9 and the
following result.

Lemma 2.10. Let B1,B2, . . . be an i.i.d. process where B1 is uniformly
distributed over {−,+}. Also let Z0,Z1, . . . be a [0,1]-valued random
process where Z0 is constant and

Zn ≤
{

KZn−1, if Bn = −
KZ2

n−1, if Bn = +

for some finite K > 0. Suppose also that Zn converges almost surely
to a {0,1}-valued random variable Z∞ with Pr[Z∞ = 0] = z. Then, for
any β < 1/2,

lim
n→∞Pr[Zn ≤ 2−2nβ

] = z.

We defer the proof of Lemma 2.10 until Section 5, where we prove
a more general result. We are now ready to prove Theorem 2.5:

Proof of Theorem 2.5. We will show that for all δ > 0 and sufficiently
large N , the size of the set

A′′
β := {i : Z(Ui | Y N

1 U i−1
1 ) ≤ 2−Nβ}

is at least (1 − H(X | Y ) − δ)N , which will yield the lemma since the
Bhattacharyya parameter upper bounds the average error probability.
For this purpose, observe that the Bhattacharyya parameters obtained
along the polarization construction satisfy the equalities

Z(U1 | Y N
1 ) = Z−···−−

Z(U2 | Y N
1 U1) = Z−···−+

Z(U3 | Y N
1 U2

1 ) = Z−···+−

...

Z(UN−1 | Y N
1 UN−2

1 ) = Z+···+−

Z(UN | Y N
1 UN−1

1 ) = Z+···++,

(2.14)
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for any N . As in the proof of Theorem 2.3, define an i.i.d. process
B1,B2, . . . with Pr[B1 = −] = Pr[B1 = +] = 1/2, and a [0,1]-valued pro-
cess Z0,Z1, . . . with

Z0 = Z(X | Y )

Zn = ZBn
n−1, n = 1,2, . . .

Observe that B1,B2, . . . induces a uniform distribution on Zn over the
set {Z−···−−, . . . ,Z+···++}. Also, the almost sure convergence to {0,1}
of the process Hn, defined in (2.11) and Proposition 2.8 imply the
almost sure convergence of Zn to the set {0,1} with Pr[limn→∞ Zn = 0]
= 1 − H(X | Y ). The claim then follows from Lemma 2.10.

It is evident that the bounds in Lemma 2.9 are the only properties
of the polarization construction that have a bearing upon the above
proof. This brings out another technical appeal of polar codes: their
large blocklength behavior can be inferred directly from the effect of the
underlying one-step transformation on the Bhattacharyya parameters.
This proves especially useful when one considers polar codes based on
combining more than two random variables at a time. The recursive
nature of such constructions ensure that the error probability behavior
of the resulting codes can be analyzed with relative ease. We will discuss
these constructions and their analysis in Section 5.

2.4 Polar Channel Coding

In the previous section, we saw an entropy-achieving source coding
scheme whose average error probability decays roughly exponentially in
the square root of the blocklength. We will now see that the techniques
we reviewed can be used, almost verbatim, to obtain capacity-achieving
codes for binary-input symmetric memoryless channels.

Consider a binary-input discrete memoryless channel
W :{0,1} → Y. Let X1, . . . ,XN be a sequence of i.i.d. inputs to N uses
of W , and let Y1, . . . ,YN be the corresponding outputs (see Figure
2.4). Since the channel is memoryless and the inputs are i.i.d., the
sequence (X1,Y1), . . . ,(XN ,YN ) is also i.i.d. This is exactly the same
situation as in the previous sections, and one can imagine the following
transmission scheme, which mimics the techniques we have seen: to
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Fig. 2.4 Polar channel coding.

send the message corresponding to XN
1 , the encoder first computes

UN
1 = Gn(XN

1 ) and reveals the bits with Pe(Ui | Y N
1 U i−1

1 ) ≥ 2−Nβ
to

the decoder, and sends XN
1 through the channel. Upon receiving the

channel output Y N
1 , the receiver decodes the unknown part of UN

1
successively as in (2.6) and (2.7). It follows from Theorem 2.5 that
the average block error probability of this coding scheme is O(2−Nβ

).
Note that while all length-N binary sequences are potential codewords
in this scheme, a codeword chosen in an i.i.d. fashion will belong to
the ‘typical set’ of size ≈ 2NH(X) with high probability. Further, since
approximately NH(X | Y ) bits of information are revealed to the
receiver in advance, the effective rate of this code is approximately
I(X;Y ). Hence, by assigning the appropriate distribution to X1, the
capacity of the channel can be achieved.

The above coding argument is identical to the one in Section 2.3
but, while it is mathematically correct, it is inadequate from a channel
coding perspective: First, observe that in the channel coding problem,
the distribution on the channel inputs XN

1 is induced by the encoder’s
choice of the distribution on UN

1 . This is in contrast with the source
coding case, where the distribution of XN

1 is intrinsic to the source,
and the distribution of UN

1 is induced by the transformation Gn. The
difficulty is that in order to generate i.i.d. inputs XN

1 to the channel,
the encoder would have to choose UN

1 from a non-uniform distribution,
conflicting with the common assumption that the sender’s messages are
uniformly distributed. Second, in the source coding problem the values
of the bits to be revealed to the receiver depend on the realization of
the source XN

1 . In channel coding, however, these values need to be
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revealed to the receiver prior to communication, and therefore cannot
depend on the particular message to be sent as proposed in the above
scheme.

The first of these issues is of a somewhat technical nature, and can
be dealt with most easily by insisting on uniformly distributed channel
inputs XN

1 , since this would impose a uniform distribution on UN
1 .

One can also circumvent the second issue by choosing the bits to be
revealed in advance, and taking averages over the values of these bits.
To make these arguments precise, let us consider the following coding
scheme:

Code construction. Given a blocklength N = 2n, fix 0 < β′ < β < 1/2
and find the set

Aβ := {i : Pe(Ui | Y N
1 U i−1

1 ) ≤ 2−Nβ}.

Choose Ui, i ∈ Ac
β independently and uniformly at random, and reveal

their values to the receiver. The rate of the code will be |Aβ|/N .

Encoding. Given a uniformly distributed message M ∈ {0,1}|Aβ | to be
transmitted, set UAβ

= M . Transmit XN
1 = G−1

n (UN
1 ) = Gn(UN

1 ) over
the channel.

Decoding. Upon receiving Y N
1 , the receiver decodes UN

1 successively as
in (2.6) and (2.7).

Rate and error probability. As XN
1 is i.i.d. and uniformly distributed,

we have H(X) = 1, and therefore it follows from Theorem 2.5 that if
N is sufficiently large, the rate of the code is

|Aβ|/N > 1 − H(X | Y ) − δ = I(X;Y ) − δ.

Note that I(X;Y ) here is the symmetric capacity of the channel
W : {0,1} → Y, the maximum rate achievable by binary codebooks
with an equal fraction of zeros and ones. Note also that this is the true
capacity for symmetric binary-input channels. It similarly follows from
Theorem 2.5 and Proposition 2.1 that the block error probability of
the above scheme, averaged over all messages and values of Ui, i ∈ Ac,
is o(2−Nβ′

). Therefore there exists at least one set of values of bits
Ui, i ∈ Ac — Arıkan calls these the frozen bits — for which the average
block error probability of the resulting code is at most o(2−Nβ′

).
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Turning this coding scheme into an explicit one requires one to
fix the frozen bits to appropriate values. Recall that there is no such
requirement for the source coding scheme of the previous section, since
the unreliable bit values declared to the decoder are computed from
the source realization, making the code explicit. For arbitrary binary-
input channels, finding the values of frozen bits that guarantee a low
error probability is an open problem. However, we will now see that
for the class of symmetric channels the above error probability bound
holds irrespective of the values of the frozen bits and the message to be
sent.

2.4.1 Symmetric channels

A binary-input discrete memoryless channel W :{0,1} → Y is sym-
metric if there exists a permutation π1 : Y → Y such that π−1

1 = π1

and W (y | x) = W (π1(y) | x + 1). Following [4], we will let π0 denote
the identity permutation over Y, and therefore we have W (πa(y) |
x + a) = W (y | x) for a = 0,1. We will use the more compact notation
W (i · y | x) := W (πi(y) | x).

We will now see that the upper bound the error probability of suc-
cessive cancellation decoding is independent of UN

1 , and thus of the
message to be sent and the frozen bit values. In order to do so, we will
show that channels created by the polarization construction have cer-
tain symmetries. This will allow us to use the following simple property
of symmetric channels: if the input to a symmetric channel is uniformly
distributed, then the error probability of an optimal decoder — one that
minimizes the average error probability — is independent of the chan-
nel input if the decoder makes a uniformly random decision whenever
the output y is such that W (y | 0) = W (y | 1).

Observe that the error event of an optimal decoder for an arbitrary
(i.e., possibly asymmetric) channel is contained in the event

{(x,y) : pX|Y (x | y) ≤ pX|Y (x + 1 | y)},

which for uniform inputs is equivalent to the event

B := {(x,y) : W (y | x) ≤ W (y | x + 1)}.
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The probability of B is further upper bounded by the Bhattacharyya
parameter of the channel, and thus we have

Pe(X | Y ) ≤ Pr[B] ≤ Z(X | Y ).

These are in fact the same inequalities as in the proof of Proposition 2.7.
Recall that the ith constituent of the successive cancellation decoder

described in (2.6) and (2.7) is an optimal decoder for the channel Ui →
Y N

1 U i−1
1 , although it breaks ties in favor of 1 rather than making a

random decision. When the inputs UN
1 are uniformly distributed, the

likelihood ratio in (2.7) can be rewritten for arbitrary blocklength N as

L
(
yN
1 ,ui−1

1
)

=
pY N

1 U i−1
1 |Ui

(
yN
1 ,ui−1

1 | 0
)

pY N
1 U i−1

1 |Ui

(
yN
1 ,ui−1

1 | 1
) .

Clearly, the inequalities in the paragraph above also apply to polar-
ized channels. Define the sets

Ei :=
{(

uN
1 ,yN

1
)
: p
(
yN
1 ,ui−1

1 | ui

) ≤ p
(
yN
1 ,ui−1

1 | ui + 1
)}

.

We then have

Pe(Ui | Y N
1 U i−1

1 ) ≤ Pr[Ei] ≤ Z(Ui | Y N
1 U i−1

1 ). (2.15)

It is also clear that

Pr[Ei | UN
1 = uN

1 ] := Pr[(UN
1 ,Y N

1 ) ∈ Ei | UN
1 = uN

1 ]

upper bounds the error probability of decoding ui when uN
1 is sent.

We will show that the above probability is the same for all uN
1 ,

that is, Pr[Ei] = Pr[Ei | UN
1 = uN

1 ]. Since the block error probability
of successive cancellation was upper bounded, through Propositions
2.1 and 2.7, by ∑

i∈A
Z(Ui | Y N

1 U i−1
1 ),

it will follow from (2.15) that the same upper bound holds irrespective
of the value of UN

1 .
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The main ingredient of the proof is the symmetry in the created
channels:

Proposition 2.11. If W : {0,1} → Y is symmetric, then the channels
p(yN

1 | uN
1 ) and p(yN

1 ,ui−1
1 | ui) have the following symmetries:

p
(
yN
1 | uN

1
)

= p
(
Gn

(
aN

1
) · yN

1 | uN
1 + aN

1
)

p
(
yN
1 ,ui−1

1 | ui

)
= p

(
Gn

(
aN

1
) · yN

1 ,ui−1
1 + ai−1

1 | ui + ai

)
for all aN

1 ∈ {0,1}N .

Proof. The proof follows from the linearity of Gn, and thus the result
is valid for any linear transform. Set xN

1 = Gn(uN
1 ) and bN

1 = Gn(aN
1 ).

The first claim is obtained through the following inequalities:

p
(
bN
1 · yN

1 | uN
1 + aN

1
)

= WN
(
bN
1 · yN

1 | xN
1 + bN

1
)

= WN
(
bN
1 · bN

1 · yN
1 | xN

1
)

= WN
(
yN
1 | xN

1
)

= p
(
yN
1 | uN

1
)

Here the first equality follows from the linearity of Gn, the second from
W being symmetric, and the third from the fact that π0 = π−1

0 and
π1 = π−1

1 . To obtain the second claim, we write

p
(
yN
1 ,ui−1

1 | ui

)
=

1
2N−1

∑
uN

i+1

p
(
yN
1 | uN

1
)

=
1

2N−1

∑
uN

i+1

p
(
bN
1 · yN

1 | uN
1 + aN

1
)

= p
(
bN
1 · yN

1 ,ui−1
1 + ai−1

1 | ui + ai

)
,

where the second equality follows from the first claim, and the third
equality is obtained by observing that the summation over uN

i+1 is equiv-
alent to a summation over uN

i+1 + aN
i+1.

We are now ready to prove the claimed result.
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Proposition 2.12. Pr[Ei | UN
1 = uN

1 ] = Pr[Ei] for all i and uN
1 ∈

{0,1}N .

Proof. First note that the symmetry in the channel p(yN
1 ,ui−1

1 | ui) and
the definition of Ei imply

(uN
1 ,yN

1 ) ∈ Ei if and only if (uN
1 + aN

1 ,Gn(aN
1 ) · yN

1 ) ∈ Ei.

We can then write

Pr[Ei | UN
1 = uN

1 ] =
∑
yN
1

p(yN
1 | uN

1 ) [(uN
1 ,yN

1 )∈Ei]

=
∑
yN
1

p(xN
1 · yN

1 | 0N ) [(0N ,xN
1 ·yN

1 )∈Ei)]

= Pr[Ei | UN
1 = 0N ].

The last equality above is obtained by observing that the sum over
yN
1 is equivalent to a sum over xN

1 · yN
1 . This yields the claim.

2.5 Performance

As we saw in Corollary 2.6, the error probability of polar codes decay
roughly exponentially in the square root of the blocklength. Unfor-
tunately, this performance guarantee is an asymptotic one, and the
proof of Lemma 2.10 in Section 4 suggests that one may need to take
very large blocklengths to observe the promised decay. Here we will see
corroborating evidence to this prediction: at short blocklengths, polar
codes’ performance under successive cancellation decoding is inferior
to that of state-of-the-art codes (Figure 2.5). This disadvantage seems
to be largely due to the successive cancellation decoder, and there has
been successful attempts to eliminate it. In [44], Tal and Vardy observed
that the error performance can be improved if one avoids making hard
decisions on the bit values at each decoding step. Instead, the authors
proposed a successive cancellation ‘list decoder’, which in each step
maintains a small list containing the most likely values for the most
recent bits. The complexity of this decoder is within a factor of the
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list size from the original decoder’s — we will see in Section 3 that
the latter complexity is O(N logN) — and is thus a reasonable alter-
native for small list sizes. The error probability improvement attained
by this decoder can be seen in Figure 2.5. Even more dramatic gains
are possible through two simple modifications. The first of these is
to allow the list decoder to produce a list of candidate codewords at
the final decoding step (as opposed to a single codeword), and to use
an external method — e.g., a cyclic redundancy check as in [44] —
to eliminate incompatible candidates. The second is to make the code
systematic, i.e., to have the information bits appear as part of the trans-
mitted codeword, as Arıkan shows in [7]. Although this does not affect
the block error probability, empirical evidence shows that the bit error
probability can be improved through this modification. See Figure 2.5
for a performance comparison of these schemes.

2.A Proof of Lemma 2.2

Let R1 and R2 be [0,1/2]-valued random variables defined through

R1 = min{pX1|Y1(0 | y1),pX1|Y1(1 | y1)} whenever Y1 = y1,

R2 = min{pX2|Y2(0 | y2),pX2|Y2(1 | y2)} whenever Y2 = y2.

For a,b ∈ [0,1] define

a ∗ b = a(1 − b) + (1 − a)b.

Also let h : [0,1/2] → [0,1] denote the binary entropy function. With
these definitions, we have

H(X1 + X2 | Y 2
1 ) = E[h(R1 ∗ R2)].

Both claims of the lemma follow from the convexity of the function
h(a ∗ h−1(t)) in t ∈ [0,1/2], which was established in [48]. In particular,
we have

H(X1 + X2 | Y 2
1 ) = E[h(R1 ∗ R2)]

= E[E[h(R1 ∗ R2)] | R1]

= E[E[h(R1 ∗ h−1(h(R2)))] | R1]

≥ E[h(R1 ∗ h−1(E[h(R2)]))]

= E[h(R1 ∗ h−1(β))].
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Fig. 2.5 Bit error probability comparison for transmission over a binary-input additive
white Gaussian noise channel. Horizontal axis shows the signal-to-noise ratio. Polar codes
are optimized for this channel using a variation of the Tal–Vardy algorithm we will see in
Section 3. Plots are due to E. Arıkan, W. Gross, I. Tal, and A. Vardy.

Applying the convexity of h(a ∗ h−1(t)) a second time we obtain

H(X1 + X2 | Y 2
1 ) ≥ E[h(R1 ∗ h−1(β))]

= E[h(h−1(h(R1)) ∗ h−1(β))]

≥ h(h−1(E[h(R1)]) ∗ h−1(β))

= h(h−1(α) ∗ h−1(β)).
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It is easy to see that the last term is the equal to H(X1 + X2 | Y 2
1 ) when

(X1,Y1) and (X2,Y2) are distributed as in (i), yielding the claim. To
see the second claim, note that the convexity of h(a ∗ h−1(t)) implies

h(a ∗ h−1(t)) ≤ th(a ∗ h−1(1)) + (1 − t)h(a ∗ h−1(0))

= t + (1 − t)h(a).

It then follows that

H(X1 + X2 | Y 2
1 ) = E[h(R1 ∗ R2)]

= E[h(R1 ∗ h−1(h(R2)))]

≤ E[h(R1) + h(R2) − h(R1)h(R2)]

= E[h(R1)] + E[h(R2)] − E[h(R1)]E[h(R2)].

where the last equality follows from the independence between R1

and R2. A simple calculation shows that the last term is equal to
H(X1 + X2 | Y 2

1 ) when (X1,Y1) and (X2,Y2) are distributed as in (ii),
completing the proof.



3
Complexity

We saw in the previous section that recursively applying a certain
two-by-two transform to a memoryless binary source or channel leads
to polarization, yielding source and channel codes that achieve optimal
rates. It is clear from these coding schemes that there are three prob-
lems of complexity that need to be addressed: (i) complexity of encod-
ing, i.e., computing the function Gn, (ii) complexity of decoding, i.e.,
computing the probabilities appearing in Equation (2.6), and (iii) com-
plexity of construction, i.e., determining the set of bit indices with small
error probabilities. Thanks to the recursive nature of the construction,
all three tasks can be broken down to similar tasks of smaller sizes. We
will see that one can take advantage of this fact to accomplish these
tasks with low time and space complexities. Throughout this section,
time complexities will be given for a single-processor machine with
random-access memory, on which a single infinite-precision arithmetic
operation takes unit time.

3.1 Encoding

Recall from Section 2 that encoding in polar source coding amounts
to computing XN

1 = Gn(UN
1 ) from the source vector UN

1 , where Gn is

292
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defined recursively through

G0(u) = u,

Gn(u1,u2) = πn(Gn−1(u1) + Gn−1(u2),Gn−1(u2)), n = 1,2, . . . .

where u1,u2 ∈ {0,1}N/2. In polar channel coding, on the other hand,
encoding consists in performing the mapping G−1

n . These tasks are
equivalent. It is indeed not difficult to show that G−1

n = Gn. (A proof
of this can be found in [4].)

Let KN denote the time complexity of computing Gn. Assuming
that permuting N elements takes N units of time, and that binary
addition takes unit time, it is clear from the definition of Gn that
KN ≤ 2KN/2 + N/2 + N . If one takes K1 = 1, it can then be shown by
induction that

KN ≤ 3
2
N logN + N,

i.e., the time complexity of encoding is O(N logN). An implementation
of polar encoding is depicted in Figure 3.1. It is clear that at each stage
of computation only the N incoming bit values from the previous stage
need to be remembered. Therefore the space complexity of encoding
is O(N).

Fig. 3.1 An implementation of polar source encoding for n = 3 (N = 8). Computation is
performed in three stages, from left to right. In each, nodes compute the modulo-2 sum of
the incoming bit values on the right and send the result through the edges on the left. The
order of computation is reversed in channel encoding.
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3.2 Decoding

Recall the successive decoding rule given in Section 2:

ûi =




ui, if i ∈ Ac

0, if i ∈ A and L(yN
1 , ûi−1

1 ) > 1
1, otherwise

, (3.1)

where

L(yN
1 , ûi−1

1 ) =
pUi|Y N

1 U i−1
1

(0 | yN
1 , ûi−1

1 )

pUi|Y N
1 U i−1

1
(1 | yN

1 , ûi−1
1 )

. (3.2)

We will see that the complexity of this decoder is O(N logN). To sim-
plify the analysis, we will estimate the total complexity of producing
ûN

1 followed by computing x̂N
1 = Gn(ûN

1 ) from it.
Given distribution p := pXY , let p− and p+ denote its descendant

distributions

p− := pU1(Y 2
1 )

p+ := pU2(Y 2
1 U1).

Note that the increasing order of decoded bits 1, . . . ,N in (3.1) corre-
sponds to the order p−...−−,p−...−+, . . . ,p+...+ in the underlying distri-
butions. Therefore the task of decoding the N bits that descend from p

can be decomposed into two similar tasks of smaller size: decoding bits
û

N/2
1 , all of which descend from p−, followed by decoding bits ûN

N/2+1,
all of which descend from p+. This can be accomplished as follows:
Upon observing yN

1 , we initialize the first decoder by computing the
conditional distributions

p−
i (x | y2i

2i−1) :=
∑
u∈X

pX|Y (x + u | y2i−1)pX|Y (u | y2i), x = 0,1,

i = 1, . . . ,N/2. The decoder uses these to estimate û
N/2
1 and passes

s
N/2
1 = Gn−1(û

N/2
1 ) to the second decoder, which is then initialized by

computing the conditional distributions

p+
i (x | y2i

2i−1,si) := pX|Y (x + si | y2i−1)pX|Y (x | y2i)/p−
i (xi | y2i

2i−1).

i = 1, . . . ,N/2 to decode ûN
N/2+1. The decoder then produces t

N/2
1 :=

Gn−1(ûN
N/2+1). The estimate x̂N

1 is then computed as x̂N
1 = (sN/2

1 +

t
N/2
1 , t

N/2
1 ).
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The recursive nature of Gn implies that the tasks of the two decoders
can similarly be decomposed into smaller tasks. This decomposition can
be continued n times until one obtains N decoding tasks of blocklength
one. Let χN denote the total time complexity of producing ûN

1 and com-
puting x̂N

1 = Gn(ûN
1 ) from the decoded word. As we saw in the above

description, this task at blocklength N involves two similar tasks at
length N/2. The additional tasks of computing the N conditional distri-
butions to initialize the two decoders at length N/2, passing the output
of the first decoder to the second, and assembling the results to generate
x̂N

1 require αN operations for some constant α. Therefore we have,

χN ≤ 2χN/2 + αN. (3.3)

Applying this bound recursively we see that χN ≤ N + αN logN ,
i.e., that successive cancellation decoding can be performed in time
O(N logN). By similar arguments it can be seen that the space
complexity of the decoder at length N can also be bounded as in (3.3).
Therefore the overall space complexity is also O(N logN).

Note that the above complexity figures are given for a single proces-
sor machine. If one has multiple processors and carefully schedules the
intermediate decoding operations, then both the time and the space
complexities can be reduced to O(N). We refer the reader to [30] for
details.

3.3 Construction

Recall the main premise of polar source and channel coding: reliable
bits obtained through a polarizing transform can be decoded with small
error probability as long as the values of the unreliable bits are provided
in advance to the decoder. In Section 2, a source code of rate k/N and
blocklength N was chosen by revealing to the receiver the values of Ui

for which Z(Ui | Y N
1 U i−1

1 ) are among the k largest. In polar channel
coding, the same method yields a code of rate 1 − k/N . Note that
this is not the only reasonable definition of the set of unreliable bits;
one could for instance replace Z(Ui | Y N

1 U i−1
1 ) with H(Ui | Y N

1 U i−1
1 ) or

Pe(Ui | Y N
1 U i−1

1 ) as the figure of merit in the above scheme and still
expect the resulting code to perform well.
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In order to construct a polar code, one may compute all N

Bhattacharyya parameters

Z(Ui | Y N
1 U i−1

1 ) = 2
∑

yN
1 ,ui−1

1

√
p(0,yN

1 ui−1
1 )p(1,yN

1 ui−1
1 )

and sort them to determine the k largest. It can easily be shown that
the probability terms on the right-hand-side can be computed in time
O(N logN) for fixed yN

1 ,ui−1
1 . However, there are |Y|N · 2i−1 terms in

the summation, and no sub-exponential-time (in N) algorithm to com-
pute it exactly is known. (One exception to this is the case where
the channel between the X and Y is a binary erasure channel. See
Section 3.3.1.) Clearly, the difficulty here is the linear growth of the
number of random variables Y N

1 ,U i−1
1 in N .

One way to circumvent this issue is to quantize the alphabets
YN × {0,1}i−1 to smaller ones. In order to be of practical relevance, a
quantization method must have low computational complexity and
approximate the Bhattacharyya parameters (or any other meaningful
figure of merit) closely. The algorithm we will now see was given in [45]
and satisfies both of these requirements. The analysis offered here is
based on [36].

Let (X,Y,T ) be random variables such that X ∈ {0,1} and X–Y –T

is a Markov chain. Following the definition of channel degradation, we
will say that the distribution pXY is (physically) degraded with respect
to pXT .1 Clearly, we have

H(X | Y ) ≤ H(X | T ) and Z(X | Y ) ≤ Z(X | T ).

It also follows that applying the polarization transform to X (see
Figure 3.2) yields the Markov chains

U1−Y 2
1 −T 2

1 and U2−Y 2
1 U1−T 2

1 U1.

That is, letting p−
XY = pU1(Y 2

1 ) and p+
XY = pU2(Y 2

1 U1), we see that
degradation between pXY and pXT is preserved between their polar-
ized versions: p−

XT (respectively, p+
XT ) is degraded with respect to

1 Physical degradation is assumed here for simplicity. The statements that follow are also
valid under stochastic degradation.
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Fig. 3.2 Degradation between pXY and pXT is preserved between their polarized descen-
dants.

Fig. 3.3 Approximate distributions obtained through the procedure described in Steps 0–3.
Each distribution on the tree is degraded with respect to its original counterpart. (For
instance, p−d+ is degraded with respect to p−+.)

p−
XY (respectively, p+

XY ). It follows immediately that degradation is
preserved between all polarized descendants of pXY and pXT , and thus
we have

H(Ui | Y N
1 U i−1

1 ) ≤ H(Ui | TN
1 U i−1

1 ),

Z(Ui | Y N
1 U i−1

1 ) ≤ Z(Ui | TN
1 U i−1

1 ).

The approximation algorithm we will see replaces polarized descen-
dants of pXY with degraded versions that are much simpler to describe.
It consists of the following steps (see Figure 3.3):

Step 0: Fix an integer L. Set S = {pXY }.
Step 1: Update S by replacing each p ∈ S with one-step polarized

versions p− and p+.
Step 2: Update S by replacing each p ∈ S with a degraded version

pd whose alphabet size is no larger than 2L.
Step 3: Go to Step 1.

It is readily seen that the procedure above is identical to the
polarization construction except for the additional Step 2, where the
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distributions obtained at each polarization stage are replaced with
simpler ones in order to curb the growth in the alphabet sizes. At
the end of the procedure, all distributions have an alphabet size of at
most 2L, and thus their Bhattacharyya parameters can easily be com-
puted for moderate values of L. One can then construct a code based
on these values. Since degradation is a transitive relation, distributions
obtained through the procedure above are degraded with respect to
their original counterparts (Figure 3.3). That is, this procedure overes-
timates the Bhattacharyya parameters, and thus produces a subset of
the true reliable bits.

Clearly, the number of true reliable bits ‘missed’ by the procedure
(i.e., the rate loss) will depend on the bound L on the alphabet size,
and on how degrading is performed in Step 2. For a given L, one may
attempt to find the degrading operation that minimizes the number
of unidentified reliable bits, but this appears to be a difficult task.
A seemingly simpler task is to minimize the average increase in the
Bhattacharyya parameters at each recursion, but this too turns out to
be an analytically and computationally difficult problem. Nevertheless,
there exist suboptimal but efficient degrading methods that yield rea-
sonably small rate losses even for modest values of L, as we will see next.

To degrade distributions, we will think of X ∈ {0,1} as the input to
the channel pY |X . We will concatenate the channel with one that merges
output symbols y ∈ Y that induce similar conditional distributions on
the input. Set the shorthand notation py := pX|Y =y. Partition Y into
sets Yi,j , i = 1, . . . ,L, j = 0,1 and YL+1 defined through

Yi,j =
{

y : py(j) > py(j + 1),
i − 1

L
≤ H(py) <

i

L

}
, i = 1, . . . ,L,

YL+1 = {y : py(0) = py(1)}. (3.4)

Here, H(py) denotes the entropy of the distribution py. Now let T be
a random variable taking values in {1, . . . ,L} × {0,1} ∪ {L + 1} such
that X–Y –T is a Markov chain, where for all y with p(y) > 0 we have

pT |Y (t | y) =
{

1, if y ∈ Yt

0, otherwise
. (3.5)

Note that T can be the single symbol L + 1 or a pair of symbols (i, j).
Also observe that the channel pT |Y merges symbols y ∈ Y for which
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Fig. 3.4 Each output symbol y is placed in one of the horizontal bins based on the value of
pX|Y (0 | y). In this figure, L = 4.

the conditional input distributions py and their entropies H(py) are
close (see Figure 3.4). We can now complete the description of the
approximation algorithm on page 297 by specifying Step 2:

Step 2: Replace each distribution pXY from Step 1 with pXT

obtained through (3.5).

We will first show that the information loss incurred at Step 2
is small, in the sense that H(X | T ) − H(X | Y ) ≤ 1/L. To see this,
observe that the difference can be written as

H(X | T ) − H(X | Y )

=
∑

t

p(t)H(X | T = t) −
∑

y

p(y)H(X | Y = y)

=
∑

t


p(t)H(X | T = t) −

∑
y∈Yt

p(y)H(X | Y = y)




=
∑

t

∑
y∈Yt

p(y)[H(X | T = t) − H(X | Y = y)],
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where we used the relation

p(t) =
∑
y∈Yt

p(y), (3.6)

to obtain the third equality. Observe that the entropy difference above
is zero for t = L. It is also easily seen that p(x | t) is a convex combi-
nation of p(x | y), y ∈ Yt, that is,

p(x | t) =
∑
y∈Yt

p(y)
p(t)

p(x | y). (3.7)

Since the binary entropy function is monotonic in the intervals [0,1/2]
and [1/2,1], it follows from (3.4) and (3.7) that for all t = (i, j)

pX|T (j | t) > pX|T (j + 1 | t) and
i − 1

L
≤ H(X | T = t) <

i

L
.

That is, each entropy difference H(X | T = t) − H(X | Y = y) in the
above summation is upper bounded by 1/L, and thus

H(X | T ) − H(X | Y ) ≤ 1/L. (3.8)

We will use this result to bound the overall loss after
several recursions of the approximation algorithm. For this pur-
pose, let H,(H−,H+),(H−−,H−+,H+−,H++), . . . denote the polar-
ized entropies as before. Also let H−d (respectively, H+d) denote the
entropy obtained from H by a ‘−’ (respectively, ‘+’) operation fol-
lowed by degradation. Similarly let Hs1d...snd,sn

1 ∈ {−,+}n denote the
entropies obtained after n recursions of the approximation algorithm.
We will bound the total gap∑

sn
1 ∈{−,+}n

Hs1d...snd − Hs1...sn =
∑

sn
1 ∈{−,+}n

Hs1d...snd − 2nH

between the original entropies and their estimates. In order to do so, we
will first bound the loss incurred at the nth recursion of the algorithm
using (3.8):

Hs1d...sn−1d−d + Hs1d...sn−1d+d

≤ Hs1d...sn−1d− + Hs1d...sn−1d+ + 2/L

= 2(Hs1d...sn−1d + 1/L). (3.9)
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Summing over s1, . . . ,sn we obtain∑
sn
1

Hs1d...snd ≤ 2
∑
sn−1
1

Hs1d...sn−1d + 2n/L.

Now observe that we can apply inequality (3.9) to the right-hand-side
of the above to bound the loss in the (n − 1)th recursion. Doing this
repeatedly for each recursion of the algorithm we obtain∑

sn
1

Hs1d...snd ≤ 2nH + n2n/L,

or equivalently

1
2n

∑
sn
1

Hs1d...snd − Hs1...sn ≤ n/L,

All of the 2n differences in the above sum are non-negative, from which
it follows that at least a 1 − √

n/L fraction of the estimated entropies
Hs1d...snd are at most

√
n/L larger than the true values Hs1...sn . Hence,

by choosing L large — say L = n2 — one can estimate a significant frac-
tion of the entropies closely. Since the true entropies polarize to 0 and 1,
by choosing a sufficiently large n and L = n2, one can identify at least
(1 − δ)HN bit indices with entropies and Bhattacharyya parameters
at most δ, for any given δ > 0.

The analysis thus far is inadequate from an error probability stand-
point. In fact, continuing the above statements with an application of
the union bound only guarantees a block error probability δ(1 − δ)HN ,
although we saw in Corollary 2.6 that the block error probability of
polar codes is roughly O(2−√

N ). Fortunately, this shortcoming can be
remedied by the following augmentation to the algorithm:

i. At the nth recursion, replace all good approximate distribu-
tions, i.e., those with Bhattacharyya parameters less than δ,
with erasure distributions (defined in Section 3.3.1) with the
same Bhattacharyya parameter.

ii. Polarize only these distributions m more times without
degradation.
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We will see below that the descendants of erasure distributions are
also erasure distributions with easy-to-compute Bhattacharyya param-
eters. It will also be apparent that this procedure yields overestimates
of the true Bhattacharyya parameters. On the other hand, since there
is no degradation involved after the nth step of this algorithm, all
Bhattacharyya parameters that eventually approach zero — it follows
from (3.10) below that at least a (1 − δ) fraction of them will do so —
will be roughly O(2−√

2m). This follows from Theorem 2.5. By choos-
ing m sufficiently large, these can be made roughly O(2−

√
2m+n), i.e.,

exponentially small in the square root of the blocklength. Therefore by
varying δ, the procedure above can be used to find codes with exponen-
tially small error probabilities and rates arbitrarily close to the source
entropy (respectively, channel capacity).

3.3.1 A Special Case: Erasure Distributions

The difficulty in computing the reliabilities of polarized bits vanishes
in a special case. Consider the class of distributions with Y = {0,1,E},
p(y) > 0, pX|Y (0 | 0) = pX|Y (1 | 1) = 1, and pX|Y (0 | E) = pX|Y (1 | E) =
1/2. That is, conditioned on Y , X is either constant or uniformly dis-
tributed. We will call this the class of ‘erasure distributions’ since it
is a generalization of the case where X is the uniformly distributed
input to a binary erasure channel, Y is the output, and E is the erasure
symbol. The Bhattacharyya parameter and the conditional entropy for
such distributions are

Z(X | Y ) = H(X | Y ) = p(E). (3.10)

We will first see that polarizing pXY yields distributions that are also
in the erasure class. Recall that one polarization step yields the condi-
tional distributions

p(u1 | y2
1) =

∑
x1+x2=u1

p(x1 | y1)p(x2 | y2)

and

p(u2 | y2
1u1) =

pX|Y (u1 + u2 | y1)pX|Y (u2 | y2)
p(u1 | y2

1)
.
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In the first of these, notice that

p(u1 | y2
1) =

{
1/2, if y1 = E or y2 = E
0 or 1, otherwise

.

That is, pU1(Y 2
1 ) belongs to the erasure class, with erasure probability

2p(E) − p(E)2. It can also be verified that

p(u2 | y2
1u1) =

{
1/2, if y1 = y2 = E
0 or 1, otherwise

,

which implies that pU2(Y 2
1 U1) is also an erasure distribution with era-

sure probability p(E)2. Applying the same argument to pU1(Y 2
1 ) and

pU2(Y 2
1 U1), we see that if pXY is an erasure distribution, then all of

its polarized descendants are also erasure distributions. (The inverse
implication is also true: if pU1(Y 2

1 ) and pU2(Y 2
1 U1) are erasure distribu-

tions, then so is pXY .) That is, unlike the general case, the effective
alphabet sizes do not grow with the number of polarization levels. The
Bhattacharyya parameters of the polarized distributions can then be
computed by recursively applying the relations

Z(U1 | Y 2
1 ) = 2Z(X | Y ) − Z(X | Y )2,

Z(U2 | Y 2
1 U1) = Z(X | Y )2.

(3.11)

Comparing these with relations (2.12)–(2.13) for general distribu-
tions, we see that among all distributions with a given Bhattacharyya
parameter, the erasure distribution has the descendants with the
largest Bhattacharyya parameters. This justifies the replacement of
the approximate distributions with erasure distributions in step i on
page 301.

The method above to underestimate the reliabilities can be mod-
ified to produce overestimates instead. In order to do so, one only
needs to replace the degrading operation in Step 2 of the algorithm
with an upgrading operation. Upgrading can be performed similarly
to degrading: instead of merging symbols within each interval of the
horizontal axis in Figure 3.4, one can think of each symbol in Y as
obtained through a merging of two symbols located at the two ends of
that interval, i.e., through degrading a distribution with 2|Y| symbols,
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all of which are located at the 2L + 1 interval boundaries. Since two
symbols that are colocated are equivalent, such a distribution can be
thought of having at most 2L + 1 symbols. Through the same argu-
ments as above it can be shown that this operation reduces condi-
tional entropy by at most 1/L, and that the total error in estimates
can also be upper bounded as above. If applied recursively, this algo-
rithm produces upgraded versions of the true distributions, and hence
underestimates their Bhattacharyya parameters. A comparison of these
underestimates with the overestimates produced by the degrading algo-
rithm allows one to evaluate the rate loss incurred in quantization. See
Tables 3.1 and 3.2.

The quantization procedure we saw above is perhaps the simplest to
describe and analyze, but one can think of several other methods to do
quantization efficiently. One such method, given in [45], is to merge two
symbols at a time until 2L symbols are left. In each step, the symbols
to be merged are chosen greedily so as to minimize the increase in
the Bhattacharyya parameter. This variation has similar 0 figures to
the algorithm we saw here — an analysis is offered in [36] — and it
seems to approximate the Bhattacharyya parameters more closely. See
Tables 3.1 and 3.2.

Computational complexity can be estimated separately for the two
stages of the algorithm. In the first stage (Steps 0–3), each distribu-
tion p created by the algorithm has at most 2L symbols in Y, and thus

Table 3.1. The highest rate R for which the sum error probability
of the 2nR most reliable approximate channels (out of the 2n) is
at most 10−3.

n 5 8 11 14 17 20

Degrade 0.1250 0.1836 0.2422 0.3063 0.3626 0.4051
Upgrade 0.1563 0.2266 0.3081 0.3730 0.4187 0.4499

n 5 8 11 14 17 20

Degrade 0.1250 0.2109 0.2969 0.3620 0.4085 0.4403
Upgrade 0.1250 0.2109 0.2974 0.3633 0.4102 0.4423

Top: ‘Bin and merge’ algorithm discussed here. Bottom: ‘Greedy
mass-merging’ algorithm given in [45]. Both tables are for 16 quan-
tization levels. The underlying channel between X and Y is a
binary symmetric channel with capacity 0.5.
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Table 3.2. The highest rate R for which the sum error probability of the
2nR most reliable channels is at most 10−3 with k quantization levels and
n = 15 recursions.

k 2 4 8 16 32 64

Degrade 0.2863 0.3019 0.3134 0.3264 0.3343 0.3422
Upgrade 0.4683 0.4221 0.3973 0.3899 0.3862 0.3838

k 2 4 8 16 32 64

Degrade 0.2895 0.3667 0.3774 0.3795 0.3799 0.3800
Upgrade 0.4590 0.3943 0.3836 0.3808 0.3802 0.3801

Top: ‘Bin and merge’ algorithm discussed here, with k = 2L.
Bottom: ‘Greedy mass-merging’ algorithm given in [45]. The underlying
channel between X and Y is a binary symmetric channel with capacity 0.5.

computing p− and p+ requires at most O(L2) arithmetic operations.
For the degradation step, binning the O(L2) symbols into 2L − 1 bins
requires O(L2) computations. The cost of merging symbols in a bin is
linear in the number of symbols, since it only involves two linear oper-
ations to compute (3.7) and (3.6). Therefore, performing Steps 1 and 2
for each distribution has time complexity O(L2), except for the orig-
inal distribution, for which the complexity is O(|Y|2). Since there are
2N − 1 distributions in an n-level recursion tree, and since computing
the Bhattacharyya parameter (or conditional entropy) for the final N

distributions require O(L2) operations, the time complexity of the first
stage is O(|Y|2) + O(NL2).

The second stage (Steps i and ii) consists in recursively comput-
ing the Bhattacharyya parameters of erasure distributions using rela-
tions (3.11). These involve a constant number of arithmetic oper-
ations per polarized channel pair. Thus, with O(N) initial erasure
distributions, m additional recursions of the second stage require
O(NM) operations, where M = 2m. Therefore the overall complexity is
O(|Y|2 + N logN + NM), where the blocklength is NM . Distributions
with a continuous alphabet Y can be first discretized by degradation, in
a similar manner as above, where binning and merging symbols is per-
formed through integration. The issue of the computational complexity
required to compute such integrals will not be discussed here.

At blocklength MN , if all intermediate distributions are computed
in a breadth-first manner, then all intermediate distributions at level
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n − 1 tree need to be stored to compute the distributions at level n.
With the additional O(MN) space required to store the Bhattacharyya
parameters, the space complexity of this method is O(N(M + L2)).
Alternatively, distributions can be created in a depth-first manner. In
this method, computing any polarized distribution on the tree requires
storing only its ancestors. This modification reduces the space com-
plexity to O(L2 logN + logM).



4
Processes with Arbitrary Alphabets

We saw in Section 2 that Arıkan’s recursive method creates random
variables with extremal entropies out of a binary memoryless pro-
cess with moderate entropy, which allows one to construct capacity-
achieving channel codes as well as entropy-achieving source codes. The
cause of this polarization effect is simple: if a memoryless process
(X1,Y1),(X2,Y2), . . . with binary X1 has moderate entropy H = H(X1 |
Y1) ∈ (ε,1 − ε), then the entropies H− = H(U1 | Y 2

1 ) and H+ = H(U2 |
Y 2

1 U1) of

U1 = X1 + X2 and U2 = X2 (4.1)

are strictly away from each other (Lemma 2.2), i.e.,

H+ + δ(ε) ≤ H ≤ H− − δ(ε) for some δ(ε) > 0. (4.2)

This is illustrated in Figure 4.1. If H− and H+ are also moderate,
applying (4.1) a second time will cause further separation in the result-
ing entropies. Continuing in this fashion, we see that if the ‘entropy
paths’ we create converge at all — they indeed do — they can converge
only to zero or to one, yielding polarization. It is then clear that for
polarization to take place, the only requirement for a recursive trans-
form and the underlying process is that the resulting entropies satisfy

307
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Fig. 4.1 Left: in the binary case, allowed values of the difference H− − H+ versus H are
inside the shaded region, and are away from zero except at H = 0 and H = 1. Right: the
entropy paths created by the recursive construction keep bifurcating until they converge to
zero or one.

(4.2) at each step. This raises the following question: what classes of
processes can be polarized recursively, and what types of transforms
polarize these processes?

By the end of this monograph, it will become clear that polarization
is a fairly general phenomenon. We will begin demonstrating this gen-
erality by showing how to polarize non-binary memoryless processes.
Our motivation for this study is simple: several source and channel cod-
ing problems of practical interest are in a non-binary setting. Perhaps
the most prominent example is the additive white Gaussian channel,
where the coding gains achieved by using non-binary inputs can be
significant.

As in the binary case, the memorylessness of the underlying pro-
cesses will allow us to focus our attention on one-step transforms; once
the properties of these are established, the large-blocklength behavior
will readily follow. We will first discuss processes with prime alpha-
bet sizes. As we will see, such processes can be polarized by a simple
extension of Arıkan’s original method. We will then establish sufficient
conditions for an Arıkan-like transform to polarize processes with arbi-
trary alphabets, and provide an example of a transform family that
satisfies these conditions for all alphabet sizes. In all cases, the speed
with which polarization takes place will be as in the binary case. We
will leave out the translation of these results to low-complexity polar
source and channel coding schemes, as we hope that these will be evi-
dent from the exposition in Sections 2 and 3.
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Suppose (X1,Y1),(X2,Y2), . . . is an i.i.d. process, where X1 ∈
{0, . . . , q − 1}, and q is an arbitrary integer. As in the binary case, Y1

takes values in a finite but arbitrary set Y. We are interested in finding
an invertible transform G:X2

1 → U2
1 for which (4.2) holds for all joint

distributions on (X1,Y1). Out of the many possibilities, perhaps the
simplest guess is to use (4.1) by replacing the modulo-2 addition with
a modulo-q addition. Before studying when this transform polarizes
memoryless processes, it is useful to consider the following example,
which shows when it does not :

Example 4.1. Let X1 be uniformly distributed over X = {0,1,2,3}
and let Y1 ∈ {0,1} be such that pY |X(0 | 0) = pY |X(0 | 2) = pY |X(1 |
1) = pY |X(1 | 3) = 1. Then,1

H(X1 | Y1) = 1/2.

Also let U1 = X1 + X2 and X2 = U2. Then, the pairs (X1,Y1), (U1,Y
2
1 ),

and (U2,Y
2
1 U1) are identically distributed (after appropriate grouping

and labelling), and therefore

H(U2 | Y 2
1 U1) = H(X1 | Y1) = H(U1 | Y 2

1 ). (4.3)

That is, the transformation has no effect on the resulting distributions.
Clearly, this also implies that applying the same transform a second
time (and further) will have no effect on the distributions or on the
entropies.

At a first look, the anomaly in the above example may seem
artificial: it is indeed easy to see that if we relabel the alphabet
X by swapping 0 and 1, then the equalities in (4.3) become strict
inequalities. Nevertheless, renaming the symbols alone may not be
sufficient for polarization, as it may not guarantee that the resulting
distributions will lead to a strict separation of entropies in the further
steps of the construction.

1 In this and the succeeding sections, entropies will be computed with base-q logarithms, and
therefore will be [0,1]-valued. Also, addition of q-ary random variables will be modulo-q
unless stated otherwise.



310 Processes with Arbitrary Alphabets

The difficulty illustrated in the above example is in fact common to
all alphabets X of composite size. It is not peculiar to the particular
transform in (4.1) either: suppose that f is an operation for which the
pair (X ,f) is a group, and consider the mapping (X1,X2) → (U1,U2)

U1 = f(X1,X2), U2 = X2. (4.4)

Then we have

Proposition 4.1. If q = |X | is composite, then there exists an ε > 0
and a distribution on (X1,Y1) for which H(X1,Y1) ∈ (ε,1 − ε) and

H(U2 | Y 2
1 U1) = H(X1 | Y1) = H(U1 | Y 2

1 ).

Proof. It is known [11, p. 28] that if q is composite, then the group
(X ,f) has a proper nontrivial subgroup. That is, there exists a set
S � X with |S| > 1 such that (S,f) is a group. Now let Y1 be a constant
random variable and X1 be uniformly distributed over S. It is easy to
verify that this choice of (X1,Y1) satisfies the claim.

While the relations in (4.1) (and more generally (4.4)) fail to
describe all one-to-one mappings on X 2, we will focus our attention
to transforms of this form. In view of Proposition 4.1, we will first
restrict our attention to processes with prime q = |X |. The reason for
us to discuss the prime-q case before considering arbitrary alphabet
sizes is twofold: First, we will see that proving polarization is relatively
simple when the construction is based on (4.1). The observations we
will make to this end will also be helpful in identifying the necessary
properties of a transform to polarize processes over arbitrary alpha-
bets. Second, constructions based on (4.1) are linear. As we will see in
Section 5, generalizations of linear constructions are easy to analyze,
and they can lead to higher rates of polarization.

4.1 Alphabets of Prime Size

Let (X1,Y1),(X2,Y2), . . . be an i.i.d. process with prime q = |X |. Define

U1 = X1 + X2 and U2 = X2, (4.5)



4.1 Alphabets of Prime Size 311

where the addition is modulo-q. The next result states that the anomaly
described in Example 4.1 and Proposition 4.1 vanish when q is prime.

Lemma 4.2. For all δ > 0, there exists ε(δ) > 0 such that if (X1,Y1)
and (X2,Y2) are independent (but not necessarily identically dis-
tributed) pairs of random variables, then

H(X1 | Y1),H(X2 | Y2) ∈ (δ,1 − δ),

implies

H(X1 + X2 | Y 2
1 ) ≥ max{H(X1 | Y1),H(X2 | Y2)} + ε(δ),

provided that q = |X | is prime.

Before proving Lemma 4.2, let us describe the recursive construction
and show that Lemma 4.2 implies polarization. These will be exactly
as in the binary case: For n = 0,1, . . . , let N = 2n and define a sequence
of transforms Gn : X N → X N recursively through

G0(u) = u,

Gn(u) = πn(Gn−1(u1) + Gn−1(u2),Gn−1(u2)), n = 1,2, . . . ,

where u1,u2 ∈ X N/2 and πn : X N → X N permutes the components of
its argument vector through

πn(v)2i−1 = vi

πn(v)2i = vi+N/2
, i = 1, . . . ,N/2.

Now define

UN
1 = Gn(XN

1 ).

As in the binary case, the transform Gn polarizes the underlying
process.

Theorem 4.3. For all ε > 0,

lim
n→∞

1
N

|{i : H(Ui | Y N
1 U i−1

1 ) > 1 − ε}| = H(X1 | Y1),

lim
n→∞

1
N

|{i : H(Ui | Y N
1 U i−1

1 ) < ε}| = 1 − H(X1 | Y1).
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For the proof of the above theorem, we set the notation

H(X1 | Y1)− := H(U1 | Y 2
1 ), H(X1 | Y1)+ := H(U2 | Y 2

1 U1),

similarly to the binary case. We also define a {−,+}-valued i.i.d. process
B1,B2, . . . with Pr[B1 = −] = 1/2, and a [0,1]-valued process H0,H1, . . .

through

H0 = H(X1 | Y1)

Hn = HBn
n−1, n = 1,2, . . . .

(4.6)

Proof. It follows from the equivalences in (2.10) that

Pr[Hn ∈ I] =
1
N

|{i : H(Ui | Y N
1 U i−1

1 ) ∈ I}|

for all I ⊆ [0,1]. It therefore suffices to show that for all ε > 0

lim
n→∞Pr[Hn > 1 − ε] = H(X1 | Y1),

lim
n→∞Pr[Hn < ε] = 1 − H(X1 | Y1).

We will show the stronger result that Hn converges almost surely
(i.e., not only in probability) to a random variable H∞ with
Pr[H∞ = 1] = 1 − Pr[H∞ = 0] = H(X1 | Y1). To that end, observe that
H−

n + H+
n = 2Hn, from which it follows that the process H0,H1, . . .

is a bounded martingale and therefore converges almost surely to a
random variable H∞. As almost sure convergence implies convergence
in L1, we have E[|Hn+1 − Hn|] = 1

2E[H−
n − Hn] + 1

2E[Hn − H+
n ] =

E[H−
n − Hn] → 0. On the other hand, Lemma 4.2 implies that H−

n −
Hn > δ(ε) if Hn ∈ (ε,1 − ε), from which it follows that Hn → {0,1} with
probability 1, i.e., that H∞ is {0,1}-valued. The claim on the distribu-
tion of H∞ follows from the relation E[H∞] = E[H0] = H(X1 | Y1).

The first proof of polarization for the non-binary case, given
in [40], consisted in showing that the source Bhattacharyya parame-
ters (defined in the next section) polarize, and that this convergence
implies the convergence of the entropies. This somewhat convoluted
proof is included in Appendix 4.C for the interested reader. The proof
above is direct and simple once Lemma 4.2 is obtained, as it is clearly
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a verbatim reproduction of the one given in Section 2. Note, however,
that Lemma 4.2 is weaker than Lemma 2.2, which identifies the distri-
butions that are extremal in terms of how much they are polarized. Our
preliminary studies suggest that such simple characterizations may not
be possible in full generality in the q-ary case.

4.1.1 Proof of Lemma 4.2

We will first prove the unconditional version of Lemma 4.2, the proof
for the conditional case will then follow easily. In particular, we will
first show that if X1 and X2 are independent random variables with
moderate entropies, then the entropy of X1 + X2 is strictly larger than
the entropy of either random variable (Lemma 4.6). To see why q has
to be prime for this to hold, note that pX1+X2 is obtained through a
cyclic convolution, i.e., by taking a weighted sum of the cyclic shifts
of pX1 , where the weights are given by the coefficients of pX2 (or vice
versa, see Figure 4.2). These cyclic shifts are guaranteed to be away
from each other only if q is prime and H(X1) is not too large, which
in turn implies that H(X1 + X2) is strictly larger than H(X1).

Fig. 4.2 Cyclic convolution of two probability distributions over a ternary alphabet. The
corners of the triangle represent the unit mass distributions and the center represents the
uniform distribution.
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We now obtain a few simple lemmas in order to formalize these
arguments. Some notation first: we let both H(p) and H(X) denote
the entropy of a random variable X ∈ X with probability distribution p.
We let pi, i ∈ X denote the cyclic shifts of p, i.e.,

pi(m) = p(m − i).

The cyclic convolution of probability distributions p and r will be
denoted by p ∗ r. That is,

p ∗ r =
∑
i∈X

p(i)ri =
∑
i∈X

r(i)pi.

We also let uni(X ) denote the uniform distribution over X .
We first show that the L1 distance of a distribution from the uni-

form one is lower bounded by the corresponding Kullback–Leibler diver-
gence. This result partially complements Pinsker’s inequality.

Lemma 4.4. Let p be a distribution over X . Then,

‖p − uni(X )‖1 ≥ 1
q loge

[1 − H(p)].

Proof.

1 − H(p) =
∑
i∈X

p(i) log
p(i)
1/q

≤ loge
∑

i

p(i)
[
p(i) − 1/q

1/q

]

≤ q loge
∑

i

p(i)|p(i) − 1/q|

≤ q loge‖p − uni(X )‖1,

where we used the relation ln t ≤ t − 1 in the first inequality.

Note that Lemma 4.4 holds for distributions over arbitrary finite
sets. That |X | is a prime number has no bearing upon the above
proof.
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We next show that for prime q, if a distribution does not have too
high an entropy, then its cyclic shifts will be away from each other:

Lemma 4.5. Let p be a distribution over X . Then,

‖pi − pj‖1 ≥ 1 − H(p)
2q2(q − 1) loge

.

for all i, j ∈ X , i �= j.

Proof. Given i �= j, let m = j − i. We will show that there exists a
k ∈ X satisfying

|p(k) − p(k + m)| ≥ 1 − H(p)
2q2(q − 1) loge

,

which will yield the claim since ‖pi − pj‖1 =
∑

k∈X |p(k) − p(k + m)|.
Suppose that H(p) < 1, as the claim is trivial otherwise. Let p(�)

denote the �th largest element of p, and let S = {�:p(�) ≥ 1
q}. Note that

S is a proper subset of X . We have
|S|∑
�=1

[p(�) − p(�+1)] = p(1) − p(|S|+1)

≥ p(1) − 1/q

≥ 1
2(q − 1)

‖p − uni(X )‖1

≥ 1 − H(p)
2q(q − 1) loge

.

In the above, the second inequality is obtained by observing that
p(1) − 1/q is minimized when p(1) = · · · = p(q−1), and the third inequal-
ity follows from Lemma 4.4. Therefore, there exists at least one � ∈ S

such that

p(�) − p(�+1) ≥ 1 − H(p)
2q2(q − 1) loge

.

Given such an �, let A = {1, . . . , �}. Since q is prime, X can be written as

X = {k,k + m,k + m + m,. . . ,k+m + · · · + m︸ ︷︷ ︸
q−1 times

}
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for any k ∈ X and m ∈ X\{0}. Therefore, since A is a proper subset
of X , there exists a k ∈ A such that k + m ∈ Ac, implying

p(k) − p(k + m) ≥ 1 − H(p)
2q2(q − 1) loge

,

which yields the claim.

We can now show that unless two independent random variables are
both uniformly distributed or are both constants, their modulo-q addi-
tion strictly increases entropy:

Lemma 4.6. Let A,B ∈ X be two independent random variables. For
all δ > 0, there exists ε1(δ) > 0 such that

min{H(A),1 − H(B)} ≥ δ

implies

H(A + B) ≥ H(B) + ε1(δ).

Proof. Let p and r denote the probability distributions of A and B,
respectively, and let ei denote the distribution with a unit mass on
i ∈ X . Since H(p) ≥ δ > H(ei) = 0, it follows from the continuity of
entropy that

min
i

‖p − ei‖1 ≥ µ(δ) (4.7)

for some µ(δ) > 0. On the other hand, since H(r) ≤ 1 − δ, we have by
Lemma 4.5 that

‖ri − rj‖1 ≥ δ

2q2(q − 1) loge
> 0 (4.8)

for all pairs i �= j. Relations (4.7), (4.8), and the strict concavity of
entropy implies the existence of ε1(δ) > 0 such that

H(p ∗ r) = H

(∑
i

p(i)ri

)

≥
∑

i

p(i)H(ri) + ε1(δ)

= H(r) + ε1(δ).
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Proof of Lemma 4.2. Let P1 and P2 be two random probability dis-
tributions on X , with

P1 = PX1|Y1(· | y1) whenever Y1 = y1,

P2 = PX2|Y2(· | y2) whenever Y2 = y2.

It is then easy to see that

H(X1 | Y1) = E[H(P1)],

H(X2 | Y2) = E[H(P2)],

H(X1 + X2 | Y 2
1 ) = E[H(P1 ∗ P2)].

Suppose, without loss of generality, that H(X1 | Y1) ≤ H(X2 | Y2). We
need to show that if E[H(P1)],E[H(P2)] ∈ (δ,1 − δ) for some δ > 0,
then there exists an ε(δ) > 0 such that E[H(P1 ∗ P2)] ≥ E[H(P2)] +
ε(δ). To that end, define the event

C = {H(P1) > δ/2, H(P2) < 1 − δ/2}.

Observe that

δ < E[H(P1)]

≤ (1 − Pr[H(P1) > δ/2]) · δ/2 + Pr[H(P1) > δ/2],

implying Pr[H(P1) > δ/2] > δ
2−δ . It similarly follows that Pr[H(P2) <

1 − δ/2] > δ
2−δ . Note further that since Y1 and Y2 are independent,

so are H(P1) and H(P2). Thus, the event C has probability at least
δ2

(2−δ)2 =: ε2(δ). On the other hand, Lemma 4.6 implies that conditioned
on C we have

H(P1 ∗ P2) ≥ H(P2) + ε1(δ/2) (4.9)

for some ε1(δ/2) > 0. Thus,

E[H(P1 ∗ P2)] = Pr[C] ·E[H(P1 ∗ P2) | C] + Pr[Cc] ·E[H(P1 ∗ P2) | Cc]

≥ Pr[C] · E[H(P2) + ε1(δ/2) | C]

+ Pr[Cc] · E[H(P2) | Cc]

≥ E[H(P2)] + ε1(δ/2)ε2(δ),
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where in the first inequality we used (4.9) and the relation H(p ∗ r) ≥
H(p). Setting ε(δ) := ε1(δ/2)ε2(δ) yields the result.

4.1.2 Rate of Polarization

We have seen that a similar construction to Arıkan’s polarizes q-ary
memoryless processes for prime q. We will now show that polarization
takes place sufficiently fast — in fact as fast as in the binary case — so
that source and channel codes based on such constructions have small
error probability. We will do so following the approach in the binary
case. For this purpose, we first need to define a reliability parame-
ter, analogously to the Bhattacharyya parameter defined in Section 2,
whose behavior through the polarization process is easy to track. For
the q-ary case, a convenient choice turns out to be

Z(X | Y ) :=
1

q − 1

∑
x,x′∈X :

x �=x′

∑
y

√
pXY (x,y)pXY (x′,y).

It is easy to see that this parameter takes values in [0,1]. As a measure
of reliability, it is natural to expect that Z(X | Y ) upper bound the
average error probability of the optimal decoder, and that

Z(X | Y ) ≈ 1 if and only if H(X | Y ) ≈ 1,

Z(X | Y ) ≈ 0 if and only if H(X | Y ) ≈ 0.

The following propositions show that these requirements are indeed
met:

Proposition 4.7. Pe(X | Y ) ≤ (q − 1)Z(X | Y ).

Proof. Let Pe,x denote the error probability of the optimal decision rule
conditioned on X = x. We have

Pe,x ≤
∑

y

p(y | x) [∃x′ �=x : pX|Y (x′|y)≥pX|Y (x|y)]

≤
∑

y

p(y | x)
∑

x′ : x′ �=x

[pX|Y (x′|y)≥pX|Y (x|y)]
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≤
∑

x′ : x′ �=x

∑
y

pX|Y (x | y)p(y)
p(x)

√
pX|Y (x′ | y)
pX|Y (x | y)

=
∑

x′ : x′ �=x

∑
y

1
p(x)

√
pXY (x′,y)pXY (x,y).

Averaging the above relation over x yields the claim.

Proposition 4.8.

Z(X | Y )2 ≤ H(X | Y ) (4.10)

H(X | Y ) ≤ log(1 + (q − 1)Z(X | Y )). (4.11)

Proof. See Appendix 4.A.

Since the polarization construction is recursive as in the binary case,
the limiting behavior of the Z parameters along the polarization pro-
cess is determined by their one-step behavior. In particular, the fol-
lowing bounds will suffice to conclude that polarization takes place
fast:

Lemma 4.9. Let f : X 2 → X be such that both functions f(x1, ·) :
X → X and f(·,x2) : X → X are invertible for all x1 and x2, respec-
tively. Defining V1 := f(X1,X2) and V2 := X2 we have

Z(V1 | Y 2
1 ) ≤ (q2 − q + 1)Z(X1 | Y1) (4.12)

Z(V2 | Y 2
1 V1) ≤ (q − 1)Z(X1 | Y1)2. (4.13)

Clearly, bounds that are relevant to the present case are obtained
by taking f to be the modulo-q addition. The reason for us to
state these bounds in a slightly more general setting will be evident
when we consider polarization for arbitrary alphabet sizes in the next
section.
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Proof. The assumptions on the function f imply that there exist q

permutations πi : X → X , i = 0, . . . , q − 1 with

πi(x) �= πj(x) for all i �= j,x ∈ X
such that πi(j) = f(j, i). We therefore have

p(v1,v2,y1,y2) = pXY (π−1
v2

(v1),y1)pXY (v2,y2).

To obtain the first claim, we write

Z(V1 | Y 2
1 ) =

1
q − 1

∑
v1,v′

1 :
v1 �=v′

1

∑
y2
1

[p(v1,y1,y2)p(v′
1,y1,y2)]1/2

=
1

q−1

∑
v1,v′

1 :
v1 �=v′

1

∑
y2
1


∑

v2

p(v1,v2,y1,y2)
∑
v′
2

p(v′
1,v

′
2,y1,y2)


1/2

≤ 1
q − 1

∑
v1,v′

1 :
v1 �=v′

1

∑
y2
1

∑
v2,v′

2

[p(v1,v2,y1,y2)p(v′
1,v

′
2,y1,y2)]1/2

=
1

q − 1

∑
v2,v′

2

∑
y2

[pXY (v2,y2)pXY (v′
2,y2)]1/2

·
∑

v1,v′
1 :

v1 �=v′
1

∑
y1

[pXY (π−1
v2

(v1),y1)pXY (π−1
v′
2

(v′
1),y1)]1/2.

Splitting the summation over (v2,v
′
2) into two parts v2 = v′

2 and v2 �= v′
2,

and considering the first part we have∑
v2=v′

2

∑
y2

[pXY (v2,y2)pXY (v′
2,y2)]1/2

· 1
q − 1

∑
v1,v′

1 :
v1 �=v′

1

∑
y1

[pXY (π−1
v2

(v1),y1)pXY (π−1
v′
2

(v′
1),y1)]1/2.

The sums on the second line above are equivalent to Z(X1 | Y1) for all
v2 and y2, and those on the first line add to 1. Therefore the above



4.1 Alphabets of Prime Size 321

term is equal to Z(X1 | Y1). On the other hand, when v2 �= v′
2 we have

1
q − 1

∑
v2,v′

2 :
v2 �=v′

2

∑
y2

[pXY (v2,y2)pXY (v′
2,y2)]1/2

·
∑

v1,v′
1 :

v1 �=v′
1

∑
y1

[pXY (π−1
v2

(v1),y1)pXY (π−1
v′
2

(v′
1),y1)]1/2.

Here, the summation over y1 is upper bounded by 1, and the upper sums
are equal to Z(X1 | Y1). Therefore the above term is upper bounded by
q(q − 1)Z(X1 | Y1). Combining this with the first part yields (4.12). To
obtain (4.13), we write

Z(V2 | Y 2
1 V1) =

1
q − 1

∑
v2,v′

2 :
v2 �=v′

2

∑
y2
1 ,v1

[pXY (π−1
v2

(v1),y1)pXY (v2,y2)

·pXY (π−1
v′
2

(v1),y1)pXY (v′
2,y2)]1/2

=
1

q − 1

∑
v2,v′

2 :
v2 �=v′

2

∑
y2

[pXY (v2,y2)pXY (v′
2,y2)]1/2

·
∑
v1

∑
y1

[pXY (π−1
v2

(v1),y1)pXY (π−1
v′
2

(v1),y1)]1/2.

For all v2 �= v′
2 and y2, the lower sums on the second line are upper

bounded by (q − 1)Z(X1 | Y1), and those on the first are equivalent to
Z(X1 | Y1). This yields the second claim.

We are now ready to state and prove the main result on the rate of
polarization:

Theorem 4.10. For all 0 < β < 1/2,

lim
n→∞

1
N

|{i : Z(Ui | Y N
1 U i−1

1 ) ≤ 2−Nβ}| = 1 − H(X1 | Y1).
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Proof. The proof is identical to that of Theorem 2.5: set the shorthand
notation

Z(X1 | Y1)− := Z(U1 | Y 2
1 ), Z(X1 | Y1)+ := Z(U2 | Y 2

1 U1).

Define a {−,+}-valued i.i.d. process B1,B2, . . . with Pr[B1 = −] = 1/2
and a [0,1]-valued process Z0,Z1, . . . with

Z0 = Z(X1 | Y1)

Zn = ZBn
n−1, n = 1,2, . . . .

(4.14)

Then, the equivalences in (2.14) imply that

Pr[Zn ∈ I] =
1
N

|{i : Z(Ui | Y N
1 U i−1

1 ) ∈ I}|

for all I ⊆ [0,1]. Further, recall that the process H0,H1, . . . defined in
(4.6) converges almost surely to the set {0,1} (see proof of Theorem
4.3). It then follows from Proposition 4.8 that the process Z0,Z1, . . .

also converges almost surely to the set {0,1} with Pr[limn→∞ Zn = 0] =
1 − H(X1 | Y1). The claim then follows from Lemma 2.10 by taking
I = [0,2−Nβ

].

4.2 Arbitrary Finite Alphabets

We saw in the previous section that the mapping (X1,X2) → (X1 +
X2,X2) fails to polarize certain processes whenever q = |X | is a com-
posite number (Example 4.1). We also saw that the difficulty with such
alphabets persists so long as ‘+’ is replaced by any group operation
over X (Proposition 4.1). We are now interested in finding transforms
(X1,X2) → (U1,U2) that will polarize all i.i.d. processes over all finite
alphabets. We will in particular study mappings of the form

U1 = f(X1,X2)

U2 = X2,
(4.15)

for some f : X 2 → X . While not all one-to-one mappings (X1,X2) →
(U1,U2) can be reduced to this form, we restrict our attention to these
due to their relative simplicity.
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Once we find an appropriate transform f , we will use it recursively
as in the binary case. That is, we will define for all n = 0,1, . . . and
N = 2n a sequence of transforms Gn : X N → X N through

G0(u) = u

Gn(u1,u2) = πn(f(Gn−1(u1),Gn−1(u2)),Gn−1(u2)), n = 1,2, . . . .

(4.16)

where u1,u2 ∈ X N/2, the action of f on its arguments is componentwise
as in (4.15), and the permutation πn is as in the previous sections. Let
us now introduce the notion of a polarizing mapping:

Definition 4.1. We call a mapping f : X 2 → X polarizing if

(p.i) for all x2 ∈ X , the mapping x1 → f(x1,x2) is invertible,
(p.ii) for all x1 ∈ X , the mapping x2 → f(x1,x2) is invertible,2 and
(p.iii) for all 2 ≤ K ≤ q − 1 and distinct a0, . . . ,aK−1 ∈ X , the

matrix

Bij = f(ai,aj), i, j = 0, . . . ,K − 1

has at least K + 1 distinct entries.

Example 4.2. Consider a matrix F with Fij = f(i, j), i, j = 0, . . . q − 1.
(That is, F is the Cayley table of f .) Then it is easy to see that, of the
operations corresponding to

F =


0 1 2

1 2 0
2 0 1


 , G =




0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2


 ,

F is polarizing, whereas G is not, since G00 = G22 = 0 and G02 =
G20 = 2, violating (p.iii). Note that F and G correspond to modulo-3
and modulo-4 addition, respectively (see also Example 4.1).

2 In group theory, a pair (X ,f) with f satisfying (p.i) and (p.ii) is known as a quasigroup.
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In the rest of this section, we will give meaning to Definition 4.1
by showing that the construction in (4.16) leads to polarization if f

is a polarizing mapping: (p.i) guarantees that the one-step transform
in (4.15) is one-to-one, and (p.iii) guarantees that anomalous distribu-
tions such as the one in Example 4.1 are also polarized; it turns out
that this is indeed the only type of irregularity that needs handling.
Condition (p.ii) is in fact not necessary for polarization to take place,
and can be relaxed. We include it Definition 4.1 only because it helps
simplify the proofs. This condition is also not a very restrictive one;
there are several simple families of mappings that satisfy (p.i)–(p.iii)
for all alphabet sizes. We give one example here:

Example 4.3. The mapping f(x1,x2) = x1 + π(x2), where π : X → X
is the permutation

π(x) =




�q/2
, if x = 0

x − 1, if 1 ≤ x ≤ �q/2

x, otherwise

is polarizing for all q = |X |. A proof of this is given in Appendix 4.B.
The Cayley table of f is given below for q = 6.



3 0 1 2 4 5
4 1 2 3 5 0
5 2 3 4 0 1
0 3 4 5 1 2
1 4 5 0 2 3
2 5 0 1 3 4




Before proceeding to the proof of polarization, let us introduce a def-
inition in order to capture the anomaly described in Example 4.1: given
a distribution p over X , let ai, i = 0, . . . , q − 1 be any labelling of the
elements of X for which p(a0) ≥ p(a1) ≥ . . . ≥ p(aq−1). For all ν > 0, let

Kν := min{i ≤ q − 2: p(ai) − p(ai+1) > ν} ∪ {q − 1}
and define

Mp,ν := {a0, . . . ,aKν}.
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The general form of the anomaly described in Proposition 4.1 can be
stated as MpX1 ,ν = MpX2 ,ν for random variables X1 and X2. The next
lemma shows that a polarizing mapping will strictly increase entropy
even under such irregularities:

Lemma 4.11. For all ε,ν > 0, there exists δ(ε,ν) > 0 such that if
X1,X2 ∈ X are independent random variables with H(X1),H(X2) ∈
(ε,1 − ε) and MpX1 ,ν = MpX2 ,ν = M for some M with 1 ≤ |M | ≤ q − 1,
and if f is a polarizing mapping, then

H(f(X1,X2)) ≥ H(Xi) + δ(ε,ν), i = 1,2.

Proof. We will prove the claim for i = 2, the proof for i = 1 follows
similarly by the symmetry in the assumptions. It follows from (p.ii) that
there exist q distinct permutations πi : X → X , i = 0, . . . , q − 1 such
that f(j, i) = πi(j). Observe also that (p.i) implies

πi(x) �= πj(x) for all i �= j,x ∈ X . (4.17)

Defining probability distributions ri through ri(u) = pX2(π
−1
i (u)), we

have

pf(X1,X2) =
q−1∑
i=0

pX1(i)ri. (4.18)

It suffices to show that there exist a,b ∈ X for which

(i) pX1(a),pX1(b) ≥ η(ε,ν) for some η(ε,ν) > 0, and
(ii) ‖ra − rb‖1 ≥ ν,

since the claim will then follow immediately from (4.18), the strict
concavity of entropy, and that H(ri) = H(X2) for all i.

First consider the case M = {a} for some a ∈ X , and observe that
H(X1) > ε implies pX1(a) ≥ pX1(b) ≥ η(ε) for some b �= a and η(ε) > 0,
satisfying (i). It also follows from (4.17) that ra(πa(a)) − rb(πa(a)) =
pX1(a) − pX1(c) for some c �= a, implying (ii) since the latter difference
is at least ν, and therefore yielding the claim.
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Suppose now that 2 ≤ |M | ≤ q − 1. Define, for all x ∈ X and T ⊂ X ,
the sets

Sx,T = {i : π−1
x (i) ∈ T},

and observe that (p.iii) implies that

∀T ⊂ X , 2 ≤ |T | ≤ q − 1, ∃a,b ∈ T such that Sa,T �= Sb,T . (4.19)

Now let a,b ∈ M be such that Sa,M �= Sb,M . It then follows from the
definition of M that there exists x ∈ X for which |ra(x) − rb(x)| ≥ ν,
satisfying (ii). That (i) is also satisfied can be seen by noting that
|M | ≤ q − 1 and a,b ∈ M imply pX2(a),pX2(b) ≥ ν. This concludes the
proof.

We are now ready to prove the main result of this section, which
will lead to a polarization theorem for arbitrary discrete alphabets.

Theorem 4.12. For all ε > 0, there exists δ(ε) > 0 such that if
(X1,Y1),(X2,Y2) are i.i.d. random variable pairs with H(X1 | Y1) ∈
(ε,1 − ε), and if f : X 2 → X is a polarizing mapping, then

H(f(X1,X2) | Y 2
1 ) ≥ H(X1 | Y1) + δ(ε).

Proof. Let H1, H2 and Hu be [0,1]-valued random variables with

H1 = H(X1 | Y1 = y1)

H2 = H(X2 | Y2 = y2)

Hu = H(f(X1,X2) | Y1 = y1,Y2 = y2)

whenever (Y1,Y2) = (y1,y2). Clearly, H1 and H2 are i.i.d. with

E[H1] = E[H2] = H(X1 | Y1).

Suppose first that Pr[H1 ≤ ε/2],Pr[H1 ≥ 1 − ε/2] ≥ ε/2(2 − ε). Then,
the event

A = {y1,y2 : H1 ≤ ε/2,H2 ≥ 1 − ε/2}
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has probability at least [ε/2(2 − ε)]2. Further, as both functions x1 →
f(x1,x2) and x2 → f(x1,x2) are invertible for all x2 and x1 respectively,
we have Hu ≥ H1,H2 for all (Y1,Y2) = (y1,y2). Thus,

H(f(X1,X2) | Y1Y2) = E[Hu]

= Pr[A] · E[Hu | A] + Pr[Ac] · E[Hu | Ac]

≥ Pr[A] · E[H2 | A] + Pr[Ac] · E[H1 | Ac]

≥ Pr[A] · E[H1 + 1 − ε | A] + Pr[Ac] · E[H1 | Ac]

≥ E[H1] + [
ε

2(2 − ε)
]2(1 − ε)

= H(X1 | Y1) + [
ε

2(2 − ε)
]2(1 − ε),

yielding the claim.
Now suppose instead that Pr[H1 ≤ ε/2] < ε

2(2−ε) . Then, since

Pr[H1 ≥ 1 − ε/2] ≤ E[H1]
1 − ε/2

≤ 2 − 2ε

2 − ε
,

it follows that

Pr[H1 ∈ (ε/2,1 − ε/2)] ≥ ε

2(2 − ε)
. (4.20)

A similar argument shows that the above inequality also holds when
Pr[H1 ≥ 1 − ε/2] < ε

2(2−ε) . We will now show that the conditions of
Lemma 4.11 hold with positive probability whenever we have (4.20).
For that purpose, note that it follows from Lemma 4.4 that for all ε > 0,
there exists ν(ε) > 0 for which H(V ) ≤ 1 − ε/2 implies |MpV ,ν | ≤ q − 1.
Given such a ν, let S1 ⊂ X and S2 ⊂ X be random sets with

S1 = MpX1|Y1=y1 ,ν , whenever Y1 = y1

S2 = MpX2|Y2=y2 ,ν , whenever Y2 = y2.

As S1 and S2 are independent and identically distributed, it follows
from (4.20) and the above argument that there exists S ⊂ X with 1 ≤
|S| ≤ q − 1 such that the event

B = {y1,y2 : S1 = S2 = S}
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has probability at least [ε/2q(2 − ε)]2. It then follows from Lemma 4.11
that Hu ≥ H1 + δ(ε,ν(ε)) for some δ(ε,ν(ε)) > 0 whenever y1,y2 ∈ B.
Therefore

E[Hu] = Pr[B] · E[Hu | B] + Pr[Bc] · E[Hu | Bc]

≥ Pr[B] · E[H1 + δ(ε,ν(ε)) | B] + Pr[Bc] · E[H1 | Bc]

= E[H1] + [ε/2q(2 − ε)]2 · δ(ε,ν(ε)),

completing the proof.

We can now state the polarization theorem for arbitrary finite alpha-
bets. Let (X1,Y1),(X2,Y2), . . . be a discrete, i.i.d. process with |X | < ∞.
Also let f be a polarizing mapping, and define

UN
1 = Gn(XN

1 ),

where Gn is as in (4.16). We have

Theorem 4.13. For all ε > 0,

lim
n→∞

1
N

|{i : H(Ui | Y N
1 U i−1

1 ) > 1 − ε}| = H(X1 | Y1),

lim
n→∞

1
N

|{i : H(Ui | Y N
1 U i−1

1 ) < ε}| = 1 − H(X1 | Y1).

Proof. The proof follows from Theorem 4.12, and is identical to those
of Theorems 2.3 and 4.3.

The rate of polarization for the construction in (4.16) is also as in
the binary case:

Theorem 4.14. For all 0 < β < 1/2,

lim
n→∞|{i : Z(Ui | Y N

1 U i−1
1 ) ≤ 2−Nβ}| = 1 − H(X1 | Y1).

Proof. The proof follows from Lemma 4.9 and is identical to that of
Theorem 4.10.
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4.3 How to Achieve Capacity

Polarization results in this section immediately yield polar source cod-
ing methods that compress any discrete memoryless source to its
entropy. Recall from the discussion in Section 2.4, however, that trans-
lating polarization results to channel coding schemes becomes trivial
only for uniformly distributed channel inputs. Clearly, this statement is
equally valid for channels with non-binary input alphabets. Therefore
one can achieve the symmetric capacity of discrete memoryless channels
with the methods discussed so far, as opposed to the true capacity. In
channels where the gap between these two rates is significant, one can
use the following generic method, discussed in [14, p. 208], to approach
the true capacity: Given a channel W : X → Y, one can construct a new
channel W ′ : X ′ → Y with |X ′| ≥ |X |, where W ′(y | x′) = W (y | f(x′))
and f : X ′ → X is a deterministic map. Note that the mutual informa-
tions I(X;Y ) and I(X ′;Y ) developed across W and W ′ respectively
are identical for any distribution on input X ′ to W ′ and the induced
distribution on X. Observe further that if X ′ is uniformly distributed,
then one can induce, using an appropriate mapping f , any distribution
pX on X with pX(x) = kx/|X ′|, where kx’s are integer-valued. Conse-
quently, one can approach the true capacity of any discrete memoryless
channel W by choosing f so as to approximate the capacity-achieving
input distribution of this channel, and using a symmetric capacity-
achieving polar code for the created channel W ′. Using large input
alphabets increases the code complexity, however, as we will see next.

4.4 Complexity

Non-binary codes based on the polarization transforms discussed in
this section will have low-complexities like their binary counterparts. In
particular, if one assumes that the computation of a one-step polarizing
mapping takes one unit of time, then the time and space complexity of
encoding these codes will be O(N logN) in the blocklength. Similarly,
it readily follows from the results in [4] that successive cancellation
decoding with such codes can be performed with O(q2N logN) time and
O(qN logN) space complexities. Also by a straightforward extension of
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the algorithm proposed in [45], these codes can be constructed with
O(q2N) time and O(q logN) space complexities.

In the next section, we will continue studying the generality of polar-
ization. In particular, we will show that memoryless processes can be
polarized by generalizations of Arıkan’s construction. We will see that
for non-binary processes, such generalizations can produce substantial
gains in error probability without too much added complexity.

4.A Proof of Proposition 4.8

Proof of (4.10). The proof of this inequality was given in [5] for the
binary case; the proof of the q-ary version is identical. We nevertheless
include it here for completeness.

The Rényi entropy of order α of a random variable X is defined as

Hα(X) =
1

1 − α
log

∑
x

p(x)α

for all α > 0,α �= 1. (The logarithm is taken to the base q.) It is known
that Hα(X) is decreasing in α and that limα→1 Hα(X) = H(X). We
thus have

H(X | Y = y) ≤ H1/2(X | Y = y) = log

[∑
x

√
p(x | y)

]2

= log[1 + (q − 1)Z(X | Y = y)],

where we define Z(X | Y = y) = 1
q−1

∑
x �=x′

√
p(x | y)p(x′ | y). The

desired inequality is obtained by averaging the above relation over y

and using the concavity of t → log(1 + (q − 1)t).

Proof of (4.11). We define two new random variables S and T with
p(x,y,s, t) = p(x)p(y | x)p(s, t | x), where

p(s, t | x) =




1
2(q − 1)

, if s = x,t �= x

1
2(q − 1)

, if s �= x,t = x

0, otherwise

.
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Note that the conditional probability p(x,y | s, t) is defined only if s �= t

and is non-zero only if x = s or x = t. Therefore, if we define for s �= t

Zs,t(X | Y ) =
∑

y

√
pXY |ST (s,y | s, t)pXY |ST (t,y | s, t),

we have from Proposition 2.8 that

H(X | Y,S = s,T = t) ≥ [2Zs,t(X | Y )]2.

The proof then follows from the relations

H(X | Y ) ≥ H(X | Y ST )

≥
∑
s,t :
s �=t

p(s, t)[2Zs,t(X | Y )]2

=
∑
s,t :
s �=t

p(s, t)

[
2
∑

y

(
pXY (s,y)pST |X(s, t | s)

pST (s, t)

)1/2

·
(

pXY (t,y)pST |X(s, t | t)
pST (s, t)

)1/2
]2

≥

∑

s,t :
s �=t

p(s, t)2
∑

y

(
pXY (s,y)pST |X(s, t | s)

pST (s, t)

)1/2

·
(

pXY (t,y)pST |X(s, t | t)
pST (s, t)

)1/2



2

=


∑

s,t :
s �=t

∑
y

1
q − 1

[pXY (s,y)pXY (t,y)]1/2

2

= Z(X | Y )2.

In the above, the second inequality follows from the convexity of the
function x → x2.
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4.B A Family of Polarizing Transforms

Here we show that for all q = |X |, the function f : X 2 → X , f(x1,x2) →
x1 + π(x2) with

π(x) =




�q/2
, if x = 0

x − 1, if 1 ≤ x ≤ �q/2

x, otherwise

is polarizing (see Definition 4.1). That (p.i) and (p.ii) are satisfied read-
ily follows from π being a permutation. It remains to show (p.iii), i.e.,
that for all 2 ≤ K ≤ q − 1 and a0 < a1 < .. . < aK−1 in X , the matrix

Bij = ai + π(aj), i, j = 0, . . . ,K − 1

has at least K + 1 distinct entries. We will consider two cases:
K ≥ 3. We will show, by contradiction, that the sets {Bi1} and

{Bi(K−1)} are not identical, which leads to the claim. For this
purpose, note first that 1 ≤ a1 < aK−1. Also, since Bi1 = ai + π(a1)
and Bi(K−1) = ai + π(aK−1), it follows that if {Bi1} = {Bi(K−1)},
then there exists an L ≤ K and distinct i1, . . . , iL ∈ {0,2,3 . . . ,K − 1}
such that

B1(K−1) = Bi11

Bi1(K−1) = Bi21

...

BiL−1(K−1) = BiL1

BiL(K−1) = B11.

This implies

π(aK−1) − π(a1) = ai1 − a1 (4.21)

= ai2 − ai1

...

= a1 − aiL .

Since the terms on the right-hand side above sum to 0, we have L[π
(aK−1) − π(a0)] = 0. As ai1 , . . . ,aiL �= a1, this implies that L divides q,
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which in turn implies

max
i=0,...,K−1

(ai − ai−1) ≤ �q/2
 (4.22)

(where a−1 = aK−1) and thus

aK−1 − a0 ≥ �q/2
.
We therefore have 1 ≤ a1 ≤ �q/2
 < aK−1. It then follows from (4.21)
that ai1 − a1 = aK−1 − a1 + 1, i.e., ai1 = aK−1 + 1, a contradiction.

K = 2. Suppose contrary to the claim, that {B00,B10} = {B01,B11}.
This implies B01 = B10, i.e.,

a1 − a0 = π(a0) − π(a1). (4.23)

A similar reasoning to the one for the case K ≥ 3 also yields (4.22).
Since K = 2, it follows that a1 − a0 = �q/2
. On the other hand, it
follows from the definition of π that

a1 − a0 = �q/2
 implies π(a0) − π(a1) �= �q/2
,
contradicting (4.23). This completes the proof.

4.C An Alternative Proof of Polarization for Prime q

One can prove Theorem 4.3 by first showing that the Z parame-
ters polarize through Arıkan’s construction, which by Proposition 4.8
implies the polarization of entropies.

For this purpose, let us first define, for d = 1, . . . , q − 1, the
parameters

Zd(X | Y ) :=
∑

x

∑
y

√
p(x,y)p(x + d,y).

It is easy to verify that Zd(X | Y ) takes values in [0,1]. Clearly, Z(X |
Y ) is the mean of Zd’s:

Z(X | Y ) =
1

q − 1

∑
d�=0

Zd(X | Y ).

We also define

Zmax(X | Y ) := max
d�=0

Zd(X | Y ).
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We will show that the Zmax’s created by Arıkan’s construction converge
to 0 or 1. In order to translate this to a polarization result for entropies,
we need Zmax to satisfy

Zmax(X | Y ) ≈ 1 if and only if H(X | Y ) ≈ 1

Zmax(X | Y ) ≈ 0 if and only if H(X | Y ) ≈ 0.

The second of these relations is evident, since Z(X | Y ) ≤ Zmax(X |
Y ) ≤ (q − 1)Z(X | Y ). The following lemma implies that the first rela-
tion also holds when q is prime:

Lemma 4.15. For all prime q and δ > 0, there exists η(δ,q) > 0 such
that Zmax(X | Y ) ≥ 1 − η(δ,q) implies Z(X | Y ) ≥ 1 − δ.

Proof. Let d be such that Zd(X | Y ) = Zmax(X | Y ). Since q is prime,
X can be written as

X = {ai : ai = x + id, i = 0, . . . , q − 1}
for all x ∈ X . Setting ζx,x′ :=

∑
y

√
p(y | x)p(y | x′) we thus have

Zd(X | Y ) =
q−1∑
i=0

√
pX(ai)pX(ai+1) · ζai,ai+1

It is easily verified that Zd(X | Y ) is strictly concave in pXY , attaining
its maximum when pX is the uniform distribution, and ζai,ai+1 = 1 for
all i. It then follows that there exists ν(δ) such that Zd(X | Y ) ≥ 1 −
η(δ) implies

(i) pX(x) ≥ 1/q − ν(δ) for all x,
(ii) ζai,ai+1 ≥ 1 − ν(δ) for all i,

where ν → 0 as η → 0. Now define

by =
√

p(y | ai) −
√

p(y | ai+1),

cy =
√

p(y | ai+1) −
√

p(y | ai+2).

for all y ∈ Y. The triangle inequality states that(∑
y

(by + cy)2
)1/2

≤
(∑

y

b2
y

)1/2

+

(∑
y

c2
y

)1/2

,
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or equivalently, that√
1 − ζai,ai+2 ≤

√
1 − ζai,ai+1 +

√
1 − ζai+1,ai+2

≤ 2
√

ν(δ).

Applying the above inequality repeatedly yields√
1 − ζx,x′ ≤ (q − 1)

√
ν(δ)

for all x,x′ ∈ X , which implies

Z(X | Y ) =
1

q − 1

∑
x,x′:x �=x′

√
p(x)p(x′) · ζx,x′

≥ [1 − qν(δ)][1 − (q − 1)2ν(δ)],

yielding the claim.

Proposition 4.16. If (X1,Y1) and (X2,Y2) are i.i.d., then

Zmax(X1 + X2 | Y 2
1 ) ≤ (q − 1)(q2 − q + 1)Zmax(X1 | Y1)

Zmax(X2 | Y 2
1 ,X1 + X2) = Zmax(X1 | Y1)2.

Proof. The first claim follows from (4.12):

Zmax(X1 + X2 | Y 2
1 ) ≤ (q − 1)Z(X1 + X2 | Y 2

1 )

≤ (q − 1)(q2 − q + 1)Z(X1 | Y1)

≤ (q − 1)(q2 − q + 1)Zmax(X1 | Y1).

To obtain the second claim we write

Zd(X2 | Y 2
1 ,X1 + X2)

=
∑
x2

∑
u,y1,y2

[pXY (x2,y2)pXY (x2 + d,y2)]1/2

· [pXY (u − x2,y1)pXY (u − x2 − d,y1)]1/2

=
∑
x2,y2

[pXY (x2,y2)pXY (x2 + d,y2)]1/2

·
∑
u,y1

[pXY (u − x2,y1)pXY (u − x2 − d,y1)]1/2
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Observing that both of the summations above are equal to Zd(X1 | Y1),
we have Zd(X2 | Y1,Y2,X1 + X2) = Zd(X1 | Y1)2. This implies the
claim since t → t2 is increasing for non-negative t.

Lemma 4.17. Suppose B1,B2, . . . are i.i.d., {−,+}-valued random
variables with

P (B1 = −) = P (B1 = +) =
1
2

defined on a probability space (Ω,F ,P ). Set F0 = {φ,Ω} as the trivial
σ-algebra and set Fn, n ≥ 1 to be the σ-field generated by (B1, . . . ,Bn).

Suppose further that two stochastic processes {In : n ≥ 0} and
{Tn : n ≥ 0} are defined on this probability space with the following
properties:

(i.1) In takes values in the interval [0,1] and is measurable with
respect to Fn. That is, I0 is a constant, and In is a function
of B1, . . . ,Bn.

(i.2) {(In,Fn) : n ≥ 0} is a martingale.
(t.1) Tn takes values in the interval [0,1] and is measurable with

respect to Fn.
(t.2) Tn+1 = T 2

n when Bn+1 = +.
(i&t.1) For any ε > 0 there exists δ > 0 such that In ∈ (ε,1 − ε)

implies Tn ∈ (δ,1 − δ).

Then, I∞ := limn→∞ In exists with probability 1, I∞ takes values
in {0,1}, and P (I∞ = 1) = I0.

Proof. The almost sure convergence of In to a limit follows from {In}
being a bounded martingale. Once it is known that I∞ is {0,1}-valued
it will then follow from the martingale property that P (I∞ = 1) =
E[I∞] = I0. It thus remains to prove that I∞ is {0,1}-valued. This
in turn is equivalent to showing that for any η > 0,

P (I∞ ∈ (η,1 − η)) = 0.
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Since for any 0 < ε < η, the event {I∞ ∈ (η,1 − η)} is included in the
event

Jε := {ω : there exists m such that for all n ≥ m, In ∈ (ε,1 − ε)},

and since by property (i&t.1) there exists δ > 0 such that Jε ⊂ Kδ where

Kδ := {ω : there exists m such that for all n ≥ m, Tn ∈ (δ,1 − δ)},

it suffices to prove that P (Kδ) = 0 for any δ > 0. This is trivially true
for δ ≥ 1/2. Therefore, it suffices to show the claim for 0 < δ < 1/2.
Given such a δ, find a positive integer k for which (1 − δ)2

k
< δ. This

choice of k guarantees that if a number x ∈ [0,1 − δ] is squared k times
in a row, the result lies in [0, δ).

For n ≥ 1 define En as the event that Bn = Bn+1 = · · · =
Bn+k−1 = +, i.e., En is the event that there are k consecutive +’s in the
sequence {Bi : i ≥ 1} starting at index n. Note that P (En) = 2−k > 0,
and that {Emk : m ≥ 1} is a collection of independent events. The
Borel–Cantelli lemma thus lets us conclude that the event

E = {En occurs infinitely often}
= {ω : for every m there exists n ≥ m such that ω ∈ En}

has probability 1, and thus P (Kδ) = P (Kδ ∩ E). We will now show that
Kδ ∩ E is empty, from which it will follow that P (Kδ) = 0. To that end,
suppose ω ∈ Kδ ∩ E. Since ω ∈ Kδ, there exists m such that Tn(ω) ∈
(δ,1 − δ) whenever n ≥ m. But since ω ∈ E there exists n0 ≥ m such
that Bn0+1 = · · · = Bn0+k−1 = +, and thus Tn0+k(ω) = Tn0(ω)2

k ≤ (1 −
δ)2

k
< δ which contradicts with Tn0+k(ω) ∈ (δ,1 − δ).

Proof of Theorem 4.3. Let B1,B2, . . . be an i.i.d. binary process with
Pr[B1 = +] = 1/2. Define H0,H1, . . . and Z0,Z1, . . . as in (4.6) and
(4.14), respectively. We will show that the conditions of Lemma 4.17
are satisfied if In and Tn are replaced with Hn and Zn, respectively:
That (i.1), (i.2) and (t.1) are satisfied is clear by the definitions of Hn

and Zn, (t.2) is established in Proposition 4.16, and (i&t.1) follows
from Proposition 4.8 and Lemma 4.15. The claim is then a corollary to
Lemma 4.17.
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Generalized Constructions

In the preceding sections, polarization was achieved using a fixed recipe:
choose a transform that acts on two random variables, and use it recur-
sively. For prime alphabet sizes, an appropriate choice of mapping was
(X1,X2) → (X1 + X2,X2), or equivalently

[U1 U2] = [X1 X2]
[
1 0
1 1

]
.

Some thought reveals that an n-fold application of this mapping to a
block of N = 2n symbols XN

1 is equivalent to [4]

UN
1 = XN

1

[
1 0
1 1

]⊗n

Bn,

where ‘⊗n’ is the nth Kronecker power of a matrix, and Bn is an N × N

permutation matrix known as the bit-reversal operator. (Recall that
the inclusion of the permutation matrix Bn is out of notational con-
venience only.) In this section, we will study generalizations of this
method.

Finding transformations that polarize memoryless processes
becomes an easy task if one completely disregards complexity issues.

338
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In fact, almost all invertible binary matrices polarize such processes.
This is most easily seen in the following case. Consider an i.i.d. process
(X1,Y1),(X2,Y2), . . . where X1 is uniformly distributed on {0,1}, and
Y1 is the output of a symmetric binary-input memoryless channel with
input X1. One can think of XN

1 as codewords obtained through

XN
1 = UN

1 GN

where UN
1 is uniformly distributed over {0,1}N , and GN is an invertible

{0,1}-matrix. Suppose that GN is chosen through the following pro-
cedure: The bottom R = 1 − H(X1 | Y1) − ε fraction of the rows are
chosen independently and uniformly at random from {0,1}N . These
rows will be linearly independent with high probability. The remaining
1 − R fraction of the rows are then chosen in any manner that ensures
the invertibility of GN . We know from [14, Section 6.2] that with high
probability, the code generated by the bottom R fraction of the rows
will have exponentially small error probability (in the blocklength) over
the channel X1 → Y1. This means, by virtue of Fano’s inequality, that
H(UN

N(1−R)+1 | Y N
1 U

N(1−R)
1 ) can be made arbitrarily small as N grows

without bound, i.e.,

H(Ui | Y N
1 U i−1

1 ) → 0, for all i > N(1 − R).

It also follows from the above relation and H(UN
1 | Y N

1 ) ≥ NH(X1 | Y1)
that almost all of the conditional entropies H(Ui | Y N

1 U i−1
1 ) that are

not close to 0 must be close to 1. That is, a typical random matrix gen-
erated in this fashion will polarize the underlying process. On the other
hand, such matrices will typically have no useful structure, and thus
one may not be able to find low-complexity algorithms to decode the
generated codes. The decoding complexity of such codes will typically
be exponential in the blocklength.

The above argument can be stated more generally. Observe that in
a channel code with messages UNR

1 , codewords XN
1 , channel outputs

Y N
1 and small block error probability, the entropy

H(UNR
1 | Y N

1 ) =
NR∑
i=1

H(Ui | Y N
1 U i−1

1 )
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is also small. That is, almost all terms on the right-hand side of the
above are close to 0. Hence, any good code can be thought of as one that
polarizes the resulting process of channel inputs and outputs. A similar
statement also holds for good source codes. Polarization, if defined
as the creation of extremal entropies from mediocre ones, is then not
peculiar to polar codes, but is common to all good codes. The main
virtue of polar codes is not that they polarize processes, but that they
do so in a recursive fashion. It is this recursive structure that enables
their good performance under low-complexity successive cancellation
decoding.

5.1 Recursive Transforms

In view of the discussion above, it is reasonable to restrict the search for
methods of polarization to recursive ones. We will focus on the easiest
way of obtaining such transforms: replacing the matrix [1 0

1 1 ] in the orig-
inal construction with another square matrix, possibly of a larger size.
More precisely, we will assume that the process (X1,Y1),(X2,Y2), . . . is
i.i.d. and X1 takes values over a finite field Fq of prime size, and we
will study transforms of the form

UN
1 = XN

1 G⊗nBn, (5.1)

where N = �n, matrix multiplication is over Fq, and G is an � × �

Fq-matrix with � ≥ 2. The N × N permutation matrix Bn is defined
analogously to the bit-reversal operation in the original construction:
It corresponds to the permutation f(i) = r�(i − 1) + 1, i = 1, . . . ,N ,
where r�(i) = j for i and j with �-ary expansions bn . . . b1 and b1 . . . bn,
respectively.

In addition to their low encoding and decoding complexity, codes
based on recursive transforms are also amenable to error analysis. As in
Arıkan’s original construction, the large blocklength behavior of recur-
sive transforms is dictated by certain properties of the basic transform
G, and therefore several useful conclusions can be drawn simply by
establishing these properties. We will in particular study the following
questions: (i) What choices of G yield polarizing transforms? (ii) What
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is the error probability behavior of such codes? We will see that the
answers to both questions are fairly simple.

5.2 Polarizing Matrices

We will say that a matrix G is a polarizing matrix if it is invertible and
a recursive application of it as in (5.1) yields

lim
n→∞

1
N

|{i : H(Ui | Y N
1 U i−1

1 ) > 1 − ε}| = H(X1 | Y1)

lim
n→∞

1
N

|{i : H(Ui | Y N
1 U i−1

1 ) < ε}| = 1 − H(X1 | Y1)

for all ε > 0 and all i.i.d. processes (X1,Y1),(X2,Y2), . . . , exactly as
in the original construction. It is a direct consequence of Hall’s the-
orem [10, Theorem 16.4] that given an invertible matrix G, there exists
a permutation matrix P such that GP has non-zero diagonal entries.
We will therefore assume throughout, and without loss of generality,
that all of the diagonal entries of G are non-zero (for otherwise it
can be reduced to this form by permuting its columns). Recall that
a necessary condition for polarization is that the ‘entropy paths’ gener-
ated along the recursion always fork until they converge to 0 or 1 (see
Figure 4.1), i.e., that at least one of the created entropies at each step
be different from the others. This requirement is met by a large class of
matrices:

Lemma 5.1. Let S�
1 = X�

1G for some invertible matrix G.

(i) If G is upper-triangular, then H(Si | Y �
1 Si−1

1 ) = H(X1 | Y1)
for all i = 1, . . . , �.

(ii) If G is not upper-triangular, then for every ε > 0 there exists
δ(ε) > 0 and i ∈ {1, . . . , �} such that

H(X1 | Y1) ∈ (ε,1 − ε)

implies

H(Si | Y �
1 Si−1

1 ) − H(X1 | Y1) > δ(ε).
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Proof. Let gij denote the (i, j)th entry of G. If G is upper-triangular,
H(Si | Y �

1 Si−1
1 ) can be written as

H(Si | Y �
1 Si−1

1 )

= H


 i∑

j=1

gjiXj |Y �
1 ,g11X1,g12X1 + g22X2, . . . ,

i−1∑
j=1

gjiXj


.

Since G is invertible, its first i − 1 columns are linearly independent,
and therefore the above can be rewritten as

H(Si | Y �
1 Si−1

1 ) = H


 i∑

j=1

gjiXj |Y �
1 ,Xi−1

1


 = H(Xi | Yi),

proving (i). If on the other hand G is not upper-triangular, then let
i ∈ {1, . . . , �} be the smallest index for which the ith column of G has at
least two non-zero entries gki and gli below and including the diagonal.
Such an i always exists. Since (X1,Y1), . . . ,(X�,Y�) are independent,
and since summing independent random variables increases entropy,
we have

H(Si | Y �
1 Si−1

1 ) = H


 �∑

j=1

gjiXj |Y �
1 Si−1

1




≥ H(gkiXk + gliXl | Y �
1 Si−1

1 )

= H(gkiXk + gliXl | YkYl),

where the second equality is due to the definition of i. Observe now that
the last entropy term can be written as H(X̃k + X̃l | Yk,Yl), where X̃k

and X̃l are appropriately permuted versions of Xk and Xl, respectively.
The claim then follows from Lemma 4.2.

The following polarization result can be proven as a corollary to the
above lemma, using the standard martingale argument. (See the proof
of Theorem 2.3.)

Theorem 5.2. For all prime q, an invertible Fq-matrix is polarizing
unless it is upper-triangular.
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The above theorem says that the class of polarizing matrices is
large. One may therefore hope to find, in this large class, matrices that
yield better codes than the original polar codes in terms of their error
probabilities. We study this problem next.

5.3 Rate of Polarization

Recall that for constructions based on combining two random variables
at a time, convergence of the Bhattacharyya parameters was exponen-
tial roughly in the square root of the blocklength, i.e., we had

lim
n→∞

1
N

|{i : Z(Ui | Y N
1 U i−1

1 ) < 2−Nβ}| = 1 − H(X1 | Y1)

for all β < 1/2. Let us recall the reason behind this behavior: Through-
out the recursion, a Bhattacharyya parameter is (roughly) squared in
approximately half of the recursions, and is unaffected (i.e., raised to
power 1) in the remaining recursions. Since each recursion also dou-
bles the blocklength, a simple calculation shows that the exponent of
a typical Bhattacharyya parameter Z is roughly 1

2 log2 2 + 1
2 log2 1 = 1

2 ,
i.e., Z ≈ 2−N1/2

. (Note that we still need to prove these statements,
as they neglect the multiplicative constants appearing in the bounds
on the Bhattacharyya parameters.) It is also intuitively evident that
the same argument can be made for any recursive construction: If an
� × � matrix G creates � Bhattacharyya parameters that are roughly
equal to Z(X1 | Y1)a1 , . . . ,Z(X1 | Y1)a� , then after many recursions the
exponent of a typical Bhattacharyya parameter would be given by
E = 1

� log� a1 + . . . + 1
� log� a�, i.e., Z ≈ 2−NE

. That is, the large scale
behavior of the Bhattacharyya parameters is determined by their one-
step evolution. It thus suffices to study how the underlying matrix G

transforms the Bhattacharyya parameters in a single recursion. It turns
out that this transformation is determined largely by the partial dis-
tances of G−1:

Definition 5.1. Let G be an � × � matrix with rows g1, . . . ,g� ∈ F�
q.

The partial distances D1, . . . ,D� of G are defined as

Di = dH(〈gi〉,〈gi+1, . . . ,g�〉),
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where 〈a〉 denotes the vector space spanned by a, and

dH(〈a〉,〈b〉) := min
x∈〈a〉,y∈〈b〉

x �=0

dH(x,y)

where dH(x,y) denotes the Hamming distance between vectors x and y.

Proposition 5.3. Let S�
1 = X�

1G, and let D1, . . . ,D� be the partial
distances of G−1. We have

Z(Si | Y �
1 Si−1

1 ) ≤ q3�Z(X1 | Y1)Di , i = 1, . . . , �. (5.2)

Proof. Note first that

pSi
1Y �

1
(si

1,y
�
1) =

∑
s�
i+1

pS�
1Y �

1
(s�

1,y
�
1) =

∑
s�
i+1

�∏
i=1

pXY ([s�
1G

−1]i,yi).

We have

Z(Si | Y �
1 Si−1

1 )

=
1

q − 1

∑
s �=s′

∑
y�
1,si−1

1

[pSi
1Y �

1
((si−1

1 ,s),y�
1)pSi

1Y �
1
((si−1

1 ,s′),y�
1)]

1/2

=
1

q − 1

∑
s �=s′

∑
y�
1,si−1

1


∑

v�
i+1

∏
i

pXY ([(si−1
1 ,s,v�

i+1)G
−1]i,yi)

·
∑
w�

i+1

∏
i

pXY ([(si−1
1 ,s′,w�

i+1)G
−1]i,yi)




1/2

≤ 1
q − 1

∑
s �=s′

∑
y�
1,si−1

1

∑
v�

i+1,w�
i+1

[∏
i

pXY ([(si−1
1 ,s,v�

i+1)G
−1]i,yi)

·pXY ([(si−1
1 ,s′,w�

i+1)G
−1]i,yi)

]1/2

. (5.3)
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Observe that for all si−1
1 , v�

i+1, and w�
i+1 we have

dH((si−1
1 ,s,v�

i+1)G
−1,(si−1

1 ,s′,w�
i+1)G

−1) ≥ Di,

and therefore

∑
y�
1

[∏
i

pXY ([(si−1
1 ,s,v�

i+1)G
−1]i,yi)

·pXY ([(si−1
1 ,s′,w�

i+1)G
−1]i,yi)

]1/2

≤ [(q − 1)Z(X1 | Y1)]Di .

Combining this relation with (5.3) yields the claim.

We can now characterize the error probability behavior of general
recursive polar codes. For this purpose, we first define the exponent
E(G) of a matrix G, through the partial distances D1, . . . ,D� of G−1:

E(G) :=
1
�

�∑
i=1

log� Di. (5.4)

Theorem 5.4. Let G be an � × � polarizing matrix and UN
1 be defined

as in (5.1). Then,

lim
n→∞

1
N

|{i : Z(Ui | Y N
1 U i−1

1 ) < 2−Nβ}| = 1 − H(X1 | Y1)

for all β < E(G).

We defer the proof of Theorem 5.4 to Section 5.4. This result yields
an asymptotic upper bound on the error probability of polar source and
channel codes. That is, we asymptotically have Pe ≤ 2−Nβ

for all β <

E(G). Note that this bound holds for all polar source and channel codes
whose rates are respectively above source entropy and below channel
capacity. On the other hand, it is desirable to establish more refined
bounds that reflect the dependence of error probability on the code rate.
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This can be done by augmenting the large deviations technique in the
proof of Theorem 5.4 by a central limit theorem type argument:

Theorem 5.5[20, 46]. Let V(G) be the variance of logD1, . . . , log� D�,
that is

V(G) =
1
�

�∑
i=1

(log� Di − E(G))2

and let Q(t) := 1√
2π

∫∞
t e−τ2/2dτ . We have for R < 1 − H(X1 | Y1)

lim
n→∞

1
N

∣∣∣∣∣
{

i : Z(Ui | Y N
1 U i−1

1 ) < 2−�
nE(G)+

√
nV(G)Q−1

(
R

1−H(X1|Y1)

)
+f(n)

}∣∣∣∣∣ = R

for all f(n) = o(n).

Proof. See [19].

Observe that this result yields an upper bound on the error probability
of polar channel codes of rate R and source codes of rate 1 − R.

5.3.1 Bounds on the Rate of Polarization

The importance of Proposition 5.3 and Theorem 5.4 is in identifying
through E(G) the exponential dependence between the error proba-
bility and the blocklength. This significantly simplifies the search for
good recursive constructions since E(G) is an easy-to-calculate alge-
braic quantity. One can also use the existing results on the minimum
distance of codes to find useful bounds on the best possible E(G) for a
given size, i.e., on

E� := max
G∈F�×�

q

E(G).

It is useful to note that recursive constructions may not be of much
practical value for large values of �: It can indeed be verified easily that
the decoding complexity of codes based on a general � × � recursion
is O(q�N logN). We can therefore restrict our attention to small �, for
which one can either exactly compute or bound E�. Conveniently, even
the simplest bounding techniques provide useful information at small
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sizes. The following upper and lower bounds on the partial distances —
based on sphere packing and Gilbert–Varshamov type constructions,
respectively — were given in [26] for the binary case:

Proposition 5.6.

1
�

�∑
i=1

log� D̃i ≤ E� ≤ 1
�

�∑
i=1

log� D̂i,

where

D̂i = max


D :

� D−1
2 �∑

j=0

(
�

j

)
≤ qi−1




and

D̃i = max


D :

D−1∑
j=0

(
�

j

)
< qi


 .

An improved version of these bounds, along with the exponents of
a BCH code-based construction (both given in [26]) are plotted for
q = 2 in Figure 5.1. These results are of a somewhat negative nature,
as they show that the original exponent 1/2 of Arıkan’s construction
cannot be improved at small recursion sizes. It was in fact shown in [26]
that E� ≤ 1/2 for � < 15, and that E16 ≈ 0.51. Therefore in the binary
case, generalized constructions may not be appropriate for achieving
substantial gains in error probability without significant sacrifices in
complexity. Nevertheless, it follows from the above bounds that one can
attain ‘almost exponential’ error probability decay with the blocklength
if the size of the recursion is sufficiently large:

Proposition 5.7 ([26]). For all prime q, lim�→∞ E� = 1.

The case for generalized constructions is stronger in non-binary set-
tings. This is due to the fact that for a fixed matrix size, larger alphabet
sizes allow for better separation (in the Hamming distance) between
the rows of a matrix, yielding better exponents at any fixed �. A simple
evidence of this is given in the following result.
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Fig. 5.1 The solid and the dashed curves represent lower and upper bounds on E� (in the
binary case), respectively. The dots show the exponents of a BCH code-based construction
(see [26]).

Theorem 5.8. For � ≤ q, E� = 1
� log�(�!).

Proof. Observe first that Di ≤ i for any invertible matrix. To see this,
note that the invertibility of a matrix G with rows g1, . . . ,g� implies that
gi+1, . . . ,g� have � − i linearly independent columns, and thus span F�−i

q

at the locations corresponding to these columns. Therefore, gi can at
most be at a distance i from 〈gi+1, . . . ,g�〉.

To prove the claim, we only need to find a matrix with Di = i. To
that end, let ω be an arbitrary element of Fq other than the identity,
and let G be the matrix with rows

gi = [1,ωi,ω2i, . . . ,ω(�−1)i]

That is, G is the generator matrix of a Reed–Solomon code of rate 1.
It is known that the minimum distance of the code 〈gi, . . . ,g�〉 is i [31,
Section 10.2], and therefore

Di = dH(〈gi〉,〈gi+1, . . . ,g�〉) ≥ i.

The above theorem implies that for q ≥ 5, we have E2 = 0.5, E3 ≈
0.54, E4 ≈ 0.57, and E5 ≈ 0.59. Compare these with the upper bounds
given in Figure 5.1 for the binary case.
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5.4 Proof of Theorem 5.4

We will not provide the proof in full, since it is an almost identical
reproduction of the proof of Theorem 2.5 once we obtain the following
result.

Lemma 5.9. Let B1,B2, . . . be an i.i.d. process where B1 is uniformly
distributed over {1,2, . . . , �}. Also let Z0,Z1, . . . be a [0,1]-valued ran-
dom process where Z0 is constant and

Zn+1 ≤ KZDi
n , whenever Bn = i

for some K > 0 and 2 ≤ D1 ≤ � and 1 ≤ D2, . . . ,D� ≤ �. Suppose also
that Zn converges almost surely to a {0,1}-valued random variable Z∞
with Pr[Z∞ = 0] = z. Then, for any β < E where

E =
1
�

∑
i

log� Di

we have

lim
n→∞Pr[Zn ≤ 2−�βn

] = z.

Remark 5.1. Note that the definition of the process Z0,Z1, . . . reflects
the transformation of Bhattacharyya parameters in a single recursion
(5.2): All partial distances D1, . . . ,D� of a polarizing matrix are ≥ 1
(since the matrix is invertible), with at least one partial distance ≥ 2
(since the matrix is not upper-triangular).

This result was originally proven for � = 2 by Arıkan and Telatar in
[9]. We will provide the general proof in full for completeness, although
it is a straightforward extension of the bounding technique given in [9].
As the technique is slightly intricate, it is useful to briefly explain
the ideas contained in it: note first that for K ≤ 1 the result is a
simple corollary to the weak law of large numbers: In a sufficiently
long sequence B1, . . . ,Bn, each exponent Di appears nearly n/� times
with high probability, and thus a typical Zn is less than

Z
∏

i D
n/�
i

0 = (1/Z0)−�nE
.
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It can easily be seen that this method does not yield a useful bound
when K > 1. The proof given below is instead based on the following
observations: Whenever Zn converges to zero, there must be a finite
point n0 for which the sequence Zn, n > n0 stays below a given positive
threshold ε (Lemma 5.11). This threshold can be chosen sufficiently
small so that if Zn ≤ ε, then KZd

n is approximately the same as Zd
n if

d > 1, i.e., multiplying Zn with K has negligible effect compared with
exponentiating it. Once this is established, one can again appeal to the
law large numbers as in the case K ≤ 1 to obtain the result.

Lemma 5.10. Let a0,a1, . . . be a sequence of numbers satisfying

ai+1 = bi+1ai + K, i = 0,1, . . .

where K > 0 and bi ≥ 1 for all i. Then,

an ≤ (a0 + Kn)
n∏

i=1

bi.

Proof. A straightforward computation shows that

an = a0

n∏
i=1

bi + K

n∑
i=1

∏
j>i

bj

from which the claim follows trivially.

Lemma 5.11. For every ε > 0, there exists an m(ε) such that

Pr[Zn ≤ 1/K�+1 for all n ≥ m(ε)] > z − ε.

Proof. Let Ω = {ω : Zn(ω) → 0}, and note that Pr[Ω] = z. Also observe
that since Zn is non-negative, Ω can be written as

Ω = {ω : for all k ≥ 1 there exists n0(ω)

such that Zn(ω) < 1/k for all n ≥ n0(ω)}
=
⋂
k≥1

⋃
n0≥0

An0,k,
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where An0,k = {ω : Zn(ω) < 1/k for all n ≥ n0}. (Note that n0 in the
definition of An0,k is independent of ω.) Since the sets An0,k are increas-
ing in n0, for all ε > 0 there exists an m(ε) for which Pr[Am(ε),k] >

Pr[∪n0≥0An0,k] − ε, and thus taking k = K�+1 we have

Pr[Am(ε),K�+1 ] > Pr[∪n0≥0An0,K�+1 ] − ε ≥ Pr[Ω] − ε,

yielding the claim.

Lemma 5.12. For all ε > 0, there exists an n(ε) such that

Pr[logK Zn < −n/4�] > z − ε

for all n ≥ n(ε).

Proof. Given ε > 0, choose m and Am,K�+1 as in the proof Lemma 5.11.
Observe that inside the set Am,K�+1 we have, conditioned on Bn = i,

Zn+1 ≤ KZDi
n

≤ K1−(Di−1)(�+1)Zn

≤
{

K−�Zn, if Bn = 1

KZn, if Bn = 2, . . . , �
,

or equivalently

logK Zn+1 ≤ logK Zn − �, if Bn = 1

logK Zn+1 ≤ logK Zn + 1, if Bn = 2, . . . , �.

This implies that inside the set Am,K�+1

logK Zn ≤ logK Zm + (n − m)(1 − α(� + 1))

where α is the fraction of 1’s in the sequence Bm, . . . ,Bn. Let Tn
m,α

denote the event that the sequence Bm, . . . ,Bn contains at least an
α fraction of each letter k ∈ {1, . . . , �}. Now choose n0 ≥ 2m such
that Pr[Tn

m,α] > 1 − ε for all n ≥ n0 with α = (2� + 1)/[(2� + 2)�].
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Note that such an n0 exists since α < 1/�. Then we have inside the set
Am,K�+1 ∩ Tn

m,α

logK Zn ≤ logK Zm − n

2
(1 − α(� + 1))

≤ −n/4�.

Observing that Pr[Am,K�+1 ∩ Tn
m,α] ≥ z − 2ε yields the claim.

Proof of Lemma 5.9. We only need to prove the claim for K > 1.
Given ε > 0, choose α < 1/� and γ < 1 such that αγ� > 1 − ε. Also
let n be sufficiently large so that n1 := log�(2nK)8K/Eα n2 := n1/8�K

satisfy

(i) n1 > max(n0,8�), where n0 is as in Lemma 5.12,
(ii) Pr[Tn1+n2

n1,α ] > 1 − ε, where Tn1+n2
n1,α is defined as in the proof

of Lemma 5.12,
(iii) Pr[Tn

n1+n2,α] > 1 − ε, and
(iv) n − (n1 + n2) ≥ γn.

Conditions (i)–(iii) imply that the probability of the set

A = {logK Zn1 ≤ −n1/4�} ∩ Tn2
n1,α ∩ Tn

n1+n2,α

is at least z − 3ε. Observe also that the process Ln = logK Zn satisfies

Ln+1 ≤ DiLn + K if Bn = i.

Since inside the set A we have Bn = i for at least an α fraction of Bn,
it follows from Lemma 5.10 that

Ln1+n2 ≤ (−n1/4� + n2K)
n1+n2∏
m=n1

DBm

≤ −
n1+n2∏
m=n1

DBm

≤ −
�∏

i=1

Dαn2
i

= −�E�αn2 .
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Similarly bounding Ln we obtain

Ln ≤ (Ln2 + [n − n1 − n2]K)
n∏

m=n1+n2

DBm

≤ (−�E�αn2 + nK)
n∏

m=n1+n2

DBm

≤ (−�Eαn1/8K + nK)
n∏

m=n1+n2

DBm

≤ (−�Eαn1/8K/2)
n∏

m=n1+n2

DBm

≤ −
n∏

m=n1+n2

DBm

≤ −
�∏

i=1

D
α(n−n1−n2)
i

= −�E�α(n−n1−n2)

≤ −�E�αγn

≤ −�En(1−ε)

which implies that with probability at least z − 3ε

Zn ≤ K−�(1−ε)En
= 2−�[(1−ε)E−log�(log2 K)/n]n

,

yielding the claim.



6
Joint Polarization of Multiple Processes

We have by now established that all discrete memoryless stationary
(that is, i.i.d.) processes can be polarized by a large class of recur-
sive procedures. These procedures yield low-complexity point-to-point
channel codes as well as source codes that achieve optimal rates, i.e.,
symmetric capacity and source entropy, respectively. Our aim in this
section is to apply the principles developed so far in order to obtain
joint polarization results for multiple sequences. In particular, we will
consider i.i.d. processes of the form (W1,X1,Y1),(W2,X2,Y2), . . . where
W1 ∈ W, X1 ∈ X , and Y1 ∈ Y for finite sets W, X and Y. The joint
distribution of (W1,X1,Y1) will be arbitrary.

Polarizing such a process may be understood in several ways. One
may for instance ask whether a block (WN

1 ,XN
1 ) can be transformed

such that the result (UN
1 ,V N

1 ) ∈ WN × X N is polarized in the sense
that

H(UiVi | Y N
1 U i−1

1 V i−1
1 ) ≈ 0 or ≈ 1 for almost all i’s, (6.1)

where the entropy is computed with base-|W × X| logarithms. If no
constraints are imposed on this transformation, then it is indeed easy to
attain polarization: In light of the results in Section 4, this can be done
simply by viewing (W1,X1) as a single W × X -valued random variable,

354
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and using a polarizing transform for the alphabet W × X . Naturally,
then, such a definition of joint polarization is not very interesting.

In order to obtain a more useful definition, let us first place the
underlying process (W1,X1,Y1),(W2,X2,Y2), . . . in an operational con-
text. As in single source/channel polarization, two simple interpreta-
tions are possible:

Separate encoding of correlated sources. In this setting, WN
1

and XN
1 can be viewed as the outputs of two correlated i.i.d. sources,

which are observed by separate source encoders. The sequence Y N
1 can

be thought of as side information about the source outputs, available
to the decoder. The output sequences are encoded separately by their
respective encoders, and are subsequently estimated by the decoder.
It was shown by Slepian and Wolf [43] that the set of all achievable
rate pairs (RW ,RX) in this setup is characterized by the bounds

RW ≥ H(W1 | Y1X1)

RX ≥ H(X1 | Y1W1)

RW + RX ≥ H(W1X1 | Y1).

Corner points of this region can be achieved by employing a single-
source polar code at each encoder. To see this, consider the corner point
RW = H(W1 | Y1), RX = H(X1 | Y1W1), and the following scheme:

Encoding. The encoders for W and X each choose a polarizing trans-
form for alphabet sizes |W| and |X | respectively and compute the sets

AW = {i : Z(Ui | Y N
1 U i−1

1 ) ≈ 0}
and

AX = {i : Z(Vi | Y N
1 WN

1 V i−1
1 ) ≈ 0}.

Here UN
1 (respectively, V N

1 ) is the result of the polarizing transform
for W (respectively, X). Upon observing their corresponding source
outputs WN

1 and XN
1 , both encoders apply their transforms to obtain

UN
1 and V N

1 , and send UAc
W

, and VAc
X

to the decoder.

Decoding. The decoder first estimates WN
1 from UAc

W
and Y N

1
using the successive cancellation (SC) decoder for the sequence
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(W1,Y1),(W2,Y2), . . . . (That is, it ignores its knowledge of VAc
X

.) It
then assumes that its estimate ŴN

1 is correct and therefore that ŴN
1

is identically distributed as WN
1 , and uses the SC decoder for the

sequence (X1,(Y1W1)),(X2,(Y2W2)), . . . to estimate XN
1 from VAc

X
and

(Y N
1 ŴN

1 ).

Rate. It follows from single-source polarization theorems that |Ac
W | ≈

NH(W1 | Y1) and |Ac
X | ≈ NH(X1 | Y1W1), i.e., that the above scheme

operates approximately at a corner point of the achievable region.

Error probability. A decoding error occurs if at least one of the two
constituent SC decoders errs. The probability of this event can be upper
bounded by the sum of the error probabilities of each decoder. (The
proof of this fact is identical to that of Proposition 2.1.) It follows from
previous results that each of these average block error probabilities,
and thus also their sum, is approximately 2−√

N .

Multiple-access channel. Recall that the capacity region of a
multiple-access channel is the convex hull of⋃

W,X

RW,X

where

RW,X = {(R1,R2) : RW ≤ I(W ;Y X)

RX ≤ I(X;Y W )

RW + RX ≤ I(WX;Y )}.

Here W and X are independently distributed inputs to the channel, and
Y is the output. The sequence (W1,X1,Y1),(W2,X2,Y2), . . . naturally
fits in such a setting. This is best seen by considering the case in which
W1 and X1 are uniformly and independently distributed inputs to the
channel, and Y1 is the output. The region corresponding to this case is
described by the rate bounds

RW ≤ 1 − H(W1 | Y1X1)

RX ≤ 1 − H(X1 | Y1W1)

RW + RX ≤ 2 − H(W1X1 | Y1).

(6.2)
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Corner points of this region can be achieved by the following coding
scheme, which is similar to the one for the source coding case:

Code construction. The encoders for W and X each choose a polarizing
transform GW and GX for alphabet sizes |W| and |X | respectively, and
compute the sets

AW = {i : Z(Ui | Y N
1 U i−1

1 ) ≈ 0}

and

AX = {i : Z(Vi | Y N
1 WN

1 V i−1
1 ) ≈ 0}.

where UN
1 = GW (WN

1 ) and V N
1 = GX(XN

1 ) are the respective outputs
of these transforms. The senders choose Ui, i ∈ Ac

W and Vi, i ∈ Ac
X

independently and uniformly at random and reveal their values to the
receiver.

Encoding. Given uniformly distributed messages MW ∈ W |AW | and
MX ∈ X |AX |, the receivers respectively set UAW

= MW and VAX
= MX

and transmit G−1
W (UN

1 ) and G−1
X (V N

1 ) over the channel.

Decoding. The decoder first decodes UAW
from UAc

W
and Y N

1 using
the SC decoder for the sequence (W1,Y1),(W2,Y2), . . . and produces
M̂W = GW (ŴN

1 ) as its estimate of the message MW . It then assumes
that this estimate is correct, and uses the SC decoder for the sequence
(X1,(Y1W1)),(X2,(Y2W2)), . . . to decode VAX

from VAc
X

and (Y N
1 ŴN

1 ),
and produces M̂X = GX(X̂N

1 ) as its estimate of MX .

Rate. It follows from previous results that |AW | ≈ N(1 − H(W1 | Y1))
and |AX | ≈ N(1 − H(X1 | Y1W1)), i.e., that the above scheme operates
near a corner point of the region given in (6.2).

Error probability. The block error probability is as in the source coding
case, i.e., ≈ 2−√

N averaged over all message pairs and all pairs of frozen
vectors Ui, i ∈ Ac

X and Vi, i ∈ Ac
X . It thus follows that there exists at

least one frozen vector pair for which the average block error probability
is ≈ 2−√

N .
Both of the coding schemes above are obtained by reducing the

corresponding multi-user problem into two single-user problems, for
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which devising polar coding schemes is easy. Arbitrary points in the
achievable rate region in each problem can be achieved via the ‘rate
splitting’ technique of [17]. (In the multiple-access problem, one can
also use the technique discussed in Section 4.3 to achieve rate regions
with non-uniform inputs.) Clearly, these schemes can be generalized
to settings with more than two users. They also yield an alternative
polar coding method for single-sources and point-to-point channels
when the source/channel-input alphabet size is a composite number.
To see this, consider the sequence (X1,Y1),(X2,Y2), . . . with X1 ∈ X
and |X | = q1 · q2 . . . · qk. To polarize X1,X2, . . . , one may — instead of
applying a polarizing transform for the alphabet X directly — view
X1 as a collection of random variables (X(1), . . . ,X(k)) taking values in
X (1) × . . . × X (k), with |X (i)| = qi. This decomposition can be made in
an arbitrary manner. Considering the expansion

H(X1 | Y1) = H(X(1)
1 , . . . ,X

(k)
1 | Y1)

= H(X(1)
1 | Y1) + · · · + H(X(k)

1 | Y1,X
(1)
1 , . . . ,X

(k−1)
1 ),

one easily sees that long blocks of each component X(i) can be polar-
ized separately as above, and can then be decoded in the order X(1),
X(2),. . . ,X(k), using the appropriate SC decoder in each step. Such a
scheme also achieves optimal rates in both channel and source cod-
ing, with error probabilities comparable to those of direct polarization
schemes.

Our aim here is not just to find polar coding schemes for multi-user
settings. Instead, we would also like to know whether one can polarize
multiple processes jointly in the sense that (a) polarization is achieved
by applying a separate transform to the underlying sequences, and that
(b) the resulting random variables ((Ui,Vi) above) are extremal condi-
tioned on their past (U i−1

1 ,V i−1
1 ), in the sense that they consist only

of deterministic and/or uniformly random parts. Observe that our first
definition of joint polarization in (6.1) meets requirement (b) but not
(a), since a polarizing transform for a single sequence may not neces-
sarily be decomposed into two separate transforms on the constituent
sequences. On the other hand, the second polarization method we dis-
cussed does meet (a), as it achieves polarization through separately
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applying a transform to each sequence. However, it is not clear at
this point that it meets requirement (b), since the joint distributions
pUiVi|Y N

1 U i−1
1 V i−1

1
one obtains by this method may not be extremal. (We

will see that they indeed are.)
This aim can be motivated analogously to single source/channel

polarization: In the single-user case, an extremal channel is one whose
input is either determined by or independent of its output. In a multi-
user setting, a channel may be called extremal if this property holds
for all of its inputs: some are determined by the output, others are
independent of it. In the two-user case, this is equivalent to saying that
an extremal channel (or equivalently, an extremal joint source) is one for
which the entropies H(W1 | Y1X1) and H(X1 | Y1W1) are {0,1}-valued,
and H(W1X1 | Y1) is {0,1,2}-valued. It can easily be seen that there are
five possible extremal channels/sources with these properties, the rate
regions (6.2) associated with such channels are depicted in Figure 6.1. It
is also easily seen that reliable communication over extremal channels is

Fig. 6.1 Rate regions of the extremal multiple-access channels (achievable source coding rate
regions for extremal sources are analogous to these). (000) is a channel whose inputs are
independent from its output, (011) and (101) are channels in which one input is determined
by the output and the other is independent from it, (001) is one in which either of the inputs,
but not both, can be determined from the output, and (112) is a noiseless multiple-access
channel whose inputs are functions of the output.
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trivial, as in the single-user case. Our aim is to polarize several copies
of a mediocre multiple-access channel (respectively, joint source) to a
set of extremal ones, thereby simplifying the transmission (respectively,
compression) task.

6.1 Joint Polarization

Consider an i.i.d. process (W1,X1,Y1),(W2,X2,Y2), . . . as above. For
notational convenience, we will assume in this section that W = X
and later discuss how the results here apply to processes with dif-
ferent alphabet sizes. We will be interested in determining how the
entropies

H[1] := H(W1 | Y1X1),

H[2] := H(X1 | Y1W1),

H[12] := H(W1X1 | Y1),

which define the achievable rate regions evolve in the course of a joint
polarization process. For this purpose, we first choose a polarizing map-
ping, which we will denote by the generic symbol ‘+’, and apply it
separately to (W1,W2) and (X1,X2) to obtain

U1 = W1 + W2, V1 = X1 + X2,

U2 = W2, V2 = X2.

We also set the following shorthand notation for the resulting entropy
terms of interest

Hb[1] := H(U1 | Y 2
1 V1), Hg[1] := H(U2 | Y 2

1 U1V1V2),

Hb[2] := H(V1 | Y 2
1 U1), Hg[2] := H(V2 | Y 2

1 U1V1U2),

Hb[12] := H(U1V1 | Y 2
1 ), Hg[12] := H(U2V2 | Y 2

1 U1V1).

If one applies this transform to both sequences recursively in the
usual manner, one obtains after n recursions UN

1 = GN (WN
1 ) and

V N
1 = GN (XN

1 ), where again N = 2n and GN represents n recursions
of the polarizing transform. Our aim is to show that the resulting ran-
dom variable triples (Ui,Vi,(Y N

1 U i−1
1 V i−1

1 )) are polarized in the sense
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that for all ε > 0, we have

H(i)[1] := H(Ui | Y N
1 U i−1

1 V i−1
1 Vi) /∈ (ε,1 − ε),

H(i)[2] := H(Vi | Y N
1 U i−1

1 V i−1
1 Ui) /∈ (ε,1 − ε),

H(i)[12] := H(UiVi | Y N
1 U i−1

1 V i−1
1 ) /∈ (ε,1 − ε) ∪ (1 + ε,2 − ε),

(6.3)

for almost all i ∈ {1, . . . ,N}, provided that N is sufficiently large. This
is equivalent to saying that the entropy triples (H(i)[1],H(i)[2],H(i)[12])
for almost all i’s is close to one of the five extremal values

(0,0,0), (0,1,1), (1,0,1), (0,0,1), (1,1,2).

As in the previous sections, the main ingredient of the proof of
this polarization statement is a result on the single-step evolution of
entropies H[1], H[2], and H[12]:

Lemma 6.1. For every ε > 0, there exists δ > 0 such that

Hb[12] − H[12] ≤ δ

implies

(i) Hb[1] − H[1] ≤ δ and Hb[2] − H[2] ≤ δ,
(ii) H[1],H[2] /∈ (ε,1 − ε),
(iii) H[12] /∈ (2ε,1 − ε) ∪ (1 + ε,2 − 2ε).

Proof. We have

δ ≥ Hb[12] − H[12]

= H(W1 + W2,X1 + X2 | Y 2
1 ) − H(W1X1 | Y1)

= H(W1 + W2 | Y 2
1 ) − H(W1 | Y1)

+ H(X1 + X2 | Y 2
1 ,W1 + W2) − H(X1 | Y1W1)

(6.4)

Note that both entropy differences in (6.4) are non-negative, and thus
are at most δ, implying Hb[2] − H[2] ≤ δ. Swapping the W ’s and the
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X’s in the above relations also yields Hb[1] − H[1] ≤ δ, proving (i). One
can continue (6.4) as

δ ≥ H(W1 + W2 | Y 2
1 ) − H(W1 | Y1)

+ H(X1 + X2 | Y 2
1 W 2

1 ) − H(X1 | Y1W1).
(6.5)

For sufficiently small δ, it follows from (6.5) and Theorem 4.12 that
H(W1 | Y1) /∈ (ε,1 − ε), and H(X1 | Y1W1) = H[2] /∈ (ε,1 − ε). Further,
since

H(W1X1 | Y1) = H(W1 | Y1) + H(X1 | Y1W1),

it follows that H(W1X1 | Y1) = H[12] /∈ (2ε,1 − ε) ∪ (1 + ε,2 − 2ε),
yielding (iii). By swapping the X’s with the W ’s in the above chain
of inequalities one also obtains H(X1 | Y1) /∈ (ε,1 − ε) and H(W1 |
Y1X1) = H[1] /∈ (ε,1 − ε), completing the proof.

This lemma suffices to show the main polarization result of this
section.

Theorem 6.2. Let M := {(0,0,0),(0,1,1),(1,0,1),(0,0,1),(1,1,2)},
and

d(a,M) := max
b∈M

‖a − b‖, a ∈ R3.

For all ε > 0, we have

lim
n→∞

1
N

|{i : d((H(i)[1],H(i)[2],H(i)[12]),M) ≥ ε}| = 0.

Proof. The proof is similar to those of previous polarization theorems:
Let B1,B2, . . . be an i.i.d. process with Pr[B1 = b] = Pr[B1 = g] = 1/2.
Define a process (H0[1],H0[2],H0[12]),(H1[1],H1[2],H1[12]), . . . with

H0[k] = H[k],

Hn[k] = HBn
n−1[k], n = 1,2, . . . ,

for k = 1,2,12. Observe that

Hb[12] + Hg[12] = H(U1V1 | Y 2
1 ) + H(U2V2 | Y 2

1 U1V1)

= H(W 2
1 X2

1 | Y 2
1 )

= 2H[12],
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therefore the process H0[12],H1[12], . . . is a bounded martingale and
converges almost surely to a [0,2]-valued random variable H∞[12].
It then follows from (i) in Lemma 6.1 that processes H0[1],H1[1], . . .
and H0[2],H1[2], . . . also converge almost surely to [0,1]-valued ran-
dom variables H∞[1] and H∞[2], respectively. It further follows
from (ii) in Lemma 6.1 that H∞[1] and H∞[2] are {0,1}-valued,
and from (iii) that H∞[12] is {0,1,2}-valued, i.e., that the process
(H0[1],H0[2],H0[12]),(H1[1],H1[2],H1[12]), . . . converges almost surely
to a random vector taking values in the set M . The claim then
follows from the equivalence between the probability distribution of
(Hn[1],Hn[2],Hn[12]) and the distribution of (H(i)[1],H(i)[2],H(i)[12]),
i = 1, . . . ,N .

6.1.1 Rate Region

We have seen that separately applying a polarizing transformation to
two i.i.d. processes polarizes them jointly, i.e., the resulting joint distri-
butions approach one of five extremal distributions as the construction
size grows. We now consider the rate region obtained by this proce-
dure. We will discuss the multiple-access channel interpretation of the
result.

Let R denote the rate region defined by the bounds in (6.2). Also
let Rb and Rg denote the rate regions obtained after the first polariza-
tion step, i.e., those with entropies (H[1],H[2],H[12]) in (6.2) replaced
respectively by (Hb[1],Hb[2],Hb[12]) and (Hg[1],Hg[2],Hg[12]). One
can similarly define the regions Rs, s ∈ {b,g}n obtained after n polar-
ization steps. Note that

2H[1] = H(W 2
1 | Y 2

1 X2
1 )

= H(U2
1 | Y 2

1 V 2
1 )

≤ H(U1 | Y 2
1 V1) + H(U2 | Y 2

1 U1V1V2)

= Hb[1] + Hg[1].

It similarly follows that

2H[2] ≤ Hb[2] + Hg[2],

2H[12] = Hb[12] + Hg[12], (6.6)
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Fig. 6.2 The average of the rate regions after n polarization steps (the shaded region) is a
subset of the original region, but contains points on the dominant face of the latter.

and therefore the set

1
2
Rb +

1
2
Rg =

{
1
2
a +

1
2
b : a ∈ Rb, b ∈ Rg

}
,

is a subset of R. It is easy to find examples where this inclusion is
strict. Nevertheless, due to equality in (6.6) and the polymatroidal
nature of R, 1

2Rb + 1
2Rg and R share points on their dominant faces

(see Figure 6.2). Polarizing the resulting regions Rb and Rg further will
similarly lead to a loss of overall rate region, i.e., for all n

1
N

∑
s∈{b,g}n

Rs ⊂ R

although the regions on either side of the last relation will share at
least one point on their dominant faces. Note that the situation here
is in contrast with point-to-point channel polarization, where no rate
penalty is incurred by the construction.

6.1.2 Processes with Different Alphabet Sizes

We have so far assumed that the processes we polarize jointly have
identical alphabet sizes. However, this restriction is only for notational
convenience, and is not necessary for polarization to take place. It can
indeed be seen easily that the proofs given above are equally valid
when the alphabet sizes of the processes differ, and the resulting ran-
dom variables are still either uniformly random or deterministic. If one
computes entropies with base-|W||X | logarithms, then the extremal
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values for (H[1],H[2],H[12]) become

(0,0,0), (0, log|X |, log|X |) (log|W|,0, log|W|), (log|W|, log|X |,1),

corresponding respectively to the previous cases (000), (011), (101),
(112). The case (001) is precluded from this setting. To see the reason
for this, suppose that random variables (W,X,Y ) with |W| < |X | satisfy
the conditions of the case (001): X is uniformly distributed conditioned
on Y , but is a function of (W,Y ), i.e., H(X | Y ) = log|X | and H(X |
Y W ) = 0. This would imply I(W ;X | Y ) = log|X |, an impossibility
since I(W ;X | Y ) ≤ log|W|. Consequently, the rate region obtained by
polarization is rectangular (i.e., it has a single point on the dominant
face of the original region) when the alphabet sizes differ.

6.2 Rate of Polarization

Our purpose in this section is to give operational meaning to the rate
region obtained after polarization. We will do so by describing a channel
coding scheme that achieves the corresponding rate region — the source
coding counterpart is similar. We will restrict our attention to processes
with prime alphabet sizes, and will assume that the polarizing mapping
‘+’ for each alphabet is the corresponding modulo-addition operation.

Suppose W1,W2, . . . and X1,X2, . . . are i.i.d., uniformly distributed
inputs to a multiple-access channel, and Y1,Y2, . . . is the output. Let GX

and GW be two polarizing transforms as above, and UN
1 = GW (WN

1 ),
V N

1 = GX(XN
1 ) their outputs. Fix ε > 0, and define the set

Pε(a,b,c) := {i : ‖(H(i)[1],H(i)[2],H(i)[12]) − (a,b,c)‖ < ε}
for (a,b,c) ∈ R3. Let AW , AX ⊂ {1, . . . ,N} denote sets of indices
over which the users transmit their data, and choose these sets as
follows:

(i.a) If i ∈ Pε(0,0,0), then set i ∈ AW , i ∈ AX ,
(i.b) else if i ∈ Pε(0,1,1), then set i ∈ AW , i /∈ AX ,
(i.c) else if i ∈ Pε(1,0,1), then set i /∈ AW , i ∈ AX ,
(i.d) else if i ∈ Pε(0,0,1), then set either i ∈ AW , i /∈ AX or i /∈

AW , i ∈ AX ,
(ii) else, set i /∈ AW , i /∈ AX .
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The senders set Ui, i ∈ AW and Vi, i ∈ AX to be the uniformly dis-
tributed data symbols. Symbols in Ac

W and Ac
X are frozen, i.e., they

are chosen uniformly at random and revealed to the receiver. It fol-
lows from previous results that for all ε > 0 there exists N0 such
that |AW | + |AX | > N(2 − H(W1X1 | Y1)) for all N ≥ N0, i.e., that
the operating point of this scheme is close to the dominant face of the
original region. The whole dominant face of the region obtained by
polarization can be spanned by varying the sizes of the data sets AW

and AX through (i.d).
Decoding is performed successively as in the single-user case, in

the order (U1,V1),(U2,V2), . . .(UN ,VN ): in decoding (Ui,Vi) the receiver
first sets the frozen symbol (if there is one), say Ui, to its known
value, and decodes Vi using the optimal decision rule for the chan-
nel Vi → Y N

1 U i−1
1 V i−1

1 Ui. If neither Ui nor Vi is frozen, then they are
decoded in an arbitrary order, also using the optimal decision rules for
the corresponding channels. Since these channels have the same recur-
sive structure as in the single-user case, the complexity of the described
decoding operation is O(N logN). The error probability of this scheme
can similarly be bounded by those of the resulting channels:

Pe ≤
∑

i∈Pε(0,0,0)

[Z(Ui | Y N
1 U i−1

1 V i−1
1 ) + Z(Vi | Y N

1 U i−1
1 V i−1

1 )]

+
∑

i∈Pε(0,1,1)

Z(Ui | Y N
1 U i−1

1 V i−1
1 ) +

∑
i∈Pε(1,0,1)

Z(Vi | Y N
1 U i−1

1 V i−1
1 )

+
∑

i∈Pε(0,0,1)

max{Z(Ui | Y N
1 U i−1

1 V i−1
1 Vi),Z(Vi | Y N

1 U i−1
1 V i−1

1 Ui)}.

Note that the Bhattacharyya parameters on the first two lines of the
above sum are larger than those of the corresponding channels, since
they each ignore the knowledge of one symbol (Ui or Vi) available at the
output. We will see that this relaxation greatly simplifies error proba-
bility proofs. In particular, we will see that almost all Bhattacharyya
parameters in the above sum are ‘exponentially small’, and therefore
one can make the sum vanish by freezing a negligible fraction of the
data symbols in both codes:
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Lemma 6.3. Define Z ′(A | B) := Z(A | Y N
1 U i−1

1 V i−1
1 B). There exists

an ε > 0 such that for all β < 1/2,

lim
n→∞

1
N

|{i ∈ Pε(0,0,0) : Z ′(Ui) + Z ′(Vi) ≥ 2−Nβ}| = 0,

lim
n→∞

1
N

|{i ∈ Pε(0,1,1) : Z ′(Ui) ≥ 2−Nβ}| = 0,

lim
n→∞

1
N

|{i ∈ Pε(1,0,1) : Z ′(Vi) ≥ 2−Nβ}| = 0,

lim
n→∞

1
N

|{i ∈ Pε(0,0,1) : max{Z ′(Ui | Vi),Z ′(Vi | Ui)} ≥ 2−Nβ}| = 0.

Proof. It is easy to see that

(i) i ∈ Pε(0,0,0) implies Z ′(Ui),Z ′(Vi) ≤ δ(ε),
(ii) i ∈ Pε(0,1,1) implies Z ′(Ui) ≤ δ(ε),
(iii) i ∈ Pε(1,0,1) implies Z ′(Vi) ≤ δ(ε),
(iv) i ∈ Pε(0,0,1) implies Z ′(Ui | Vi),Z ′(Vi | Ui) ≤ δ(ε),

where δ(ε) → 0 as ε → 0. Therefore, the proof will be complete once we
show that whenever the above Bhattacharyya parameters are close to 0,
they are exponentially small in the square root of the blocklength. For
this purpose, we will define stochastic processes that mirror the behav-
ior of the Bhattacharyya parameters of interest, in the now-customary
manner: We first define the Bhattacharyya parameters

Zb(W1 | Y1) := Z(W1 + W2 | Y 2
1 ),

Zg(W1 | Y1) := Z(W2 | Y 2
1 ,W1 + W2,X1 + X2),

obtained from Z(W1 | Y1) after the first polarization step. Also define
an i.i.d. process B1,B2, . . . with Pr[B1 = g] = Pr[B1 = b] = 1/2, and the
processes

Z0 = Z(W1 | Y1),

Zn = ZBn
n−1, n = 1,2, . . . .
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It suffices to characterize the one-step evolution of the Bhattacharyya
parameters, the rest of the proof being identical to previous ones (e.g.,
Theorem 4.10): observe that

Zb(W1 | Y1) = Z(W1 | Y1)−

Zg(W1 | Y1) ≤ Z(W2 | Y 2
1 ,W1 + W2) = Z(W1 | Y1)+,

where Z− and Z+ are defined as in the single-user case. Consequently,
whenever Zn converges to 0, it does so at least as fast as in single-
user polarization. That is, whenever Z ′(Ui) is close to 0, it is almost
surely exponentially small in the square root of the blocklength. By
symmetry, a similar statement also holds for Z ′(Vi). This yields the
first three claims.

The last claim is trivial when |W| �= |X |, since we then have

lim
n→∞

1
N

|Pε(0,0,1)| = 0.

(See Section 6.1.2.) For the case |W| = |X |, we will prove that the
claimed rate of convergence holds for the Bhattacharyya parameter
Z ′(Ui + αVi), for some α ∈ W ∈ \{0} from which the result will follow
since

Z ′(Ui | Vi) = Z ′(Ui + αVi | Vi) ≤ Z ′(Ui + αVi).

Consider the one-step evolution of the entropy H(W1 + αX1 | Y1). We
have

Hb(W1 + αX1 | Y1) := H((W1 + αX1) + (X2 + αW2) | Y 2
1 ),

= H(W1 + αX1 | Y1)−,

and

Hg(W1 + αX1 | Y1) := H(W2 + αX2 | Y 2
1 ,W1 + W2,X1 + X2),

≤ H(W1 + αX1 | Y 2
1 ,(W1 + W2) + α(X1 + X2)),

= H(W1 + αX1 |Y 2
1 ,(W1 +αX1) + (W2 + αX2)),

= H(W1 + αX1 | Y1)+.

If one defines an entropy process H0,H1, . . . that tracks the evolution
of H(W1 + αX1 | Y1) in the course of the polarization procedure,
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then it can be shown using the above relations that H0,H1, . . . is a
supermartingale and converges almost surely to a {0,1}-valued random
variable. Moreover, it is easily seen that the above chain of relations
also holds with entropies replaced by the Bhattacharyya parameters,
and thus we have

Zb(W1 + αX1 | Y1) = Z(W1 + αX1 | Y1)−

Zg(W1 + αX1 | Y1) ≤ Z(W1 + αX1 | Y1)+.

Defining once again a Bhattacharyya process Z0,Z1, . . . in the usual
manner, it follows that whenever Zn converges to 0, it does so at least
as fast as in the single-user case. It further follows from Lemma 6.5 in
Appendix 6.A that for sufficiently large N ,

i ∈ Pε(0,0,1) implies Z ′(Ui + α Vi) ≤ δ(ε) for some α ∈ W\{0},

where δ(ε) → 0 as ε → 0. We therefore have,

lim
n→∞

1
N

{
i ∈ Pε(0,0,1) : Z ′(Ui + αVi) ≥ 2−Nβ

}
= 0

for sufficiently small ε > 0 and all β < 1/2, completing the proof.

Corollary 6.4. The average block error probability of the coding
scheme described above is o(2−Nβ

) for all β < 1/2.

6.A Appendix

Lemma 6.5. Let W,X,Y be random variables with W,X ∈ W = Fq.
There exists δ > 0 such that

(i) H(W | Y ) > 1 − δ, H(X | Y ) > 1 − δ, H(W | Y X) < δ,
H(X | Y W ) < δ and

(ii) H(W + αX | Y ) /∈ (δ,1 − δ) for all α ∈ W\{0},

imply

H(W + α′X | Y ) < δ

for some α′ ∈ W.
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Proof. Let π be a permutation on W, and let

pπ(w,x) =




1
q
, if w = π(x)

0, otherwise
.

Note that H(W ) = H(X) = 1 and H(W | X) = H(X | W ) = 0 when-
ever the joint distribution of (W,X) is pπ. We claim that for every π,
there exists an απ ∈ W\{0} such that

H(W + απX) < 1 − c(q),

where c(q) > 0 depends only on q. To see this, given a permutation
π, let

απ := π(0) − π(1). (6.7)

Clearly, απ �= 0. It is also easy to check that with these definitions we
have

Pr[W + απX = π(0)],

≥ Pr[(W,X) = (π(0),0)] + Pr[(W,X) = (π(1),1)],

=
2
q
,

which yields the claim. It also follows from the continuity of entropy in
the L1 metric that

‖pWX − pπ‖ ≤ o(δ) implies H(W + απX) ≤ 1 − c(q) + o(δ).

We claim that the conditions of the lemma imply that with high
probability (on Y ) the distance

‖pWX|Y =y − pπ‖ is small for some π. (6.8)

Note first that

δ > 1 − H(W | Y ) =
∑

y

p(y)[1 − H(W | Y = y)],

=
∑

y

p(y)D(pW |Y =y‖uni(W)),

≥
∑

y

p(y)
1
2
‖pW |Y =y − uni(W)‖2,
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where the last relation is a consequence of Pinsker’s inequality. It then
follows that the set

G = {y : ‖pW |Y =y − uni(W)‖ < δ1/4},

has probability at least 1 − 2δ1/4. Further, as

δ > H(X | WY ) =
∑

y

pY (y)H(X | W,Y = y),

the set B = {y : H(X | W,Y = y) ≤ √
δ} has probability at least 1 −√

δ. Hence, set S = G ∩ B has probability at least 1 − 2δ1/4 − √
δ.

Note that for all y ∈ S we have for any w, |1q − pW |Y =y(w)| < o(δ),
and pX|WY (x | w,y) �∈ (o(δ),1 − o(δ)), and thus

min
π

‖pWX|Y =y − pπ‖ < o(δ),

yielding the claim in (6.8). In particular, this implies that there exist
π′ and S′ ⊂ S with pY (S′) ≥ pY (S)/q! such that

‖pWX|Y =y − pπ′‖ < o(δ),

for all y ∈ S′. Choosing α′ = απ′ as in (6.7), we obtain

H(W + α′X | Y ) ≤ pY (S′)(1 − c(q) + o(δ)) + pY (S′c),

= 1 − c2 + o(δ),

where c2 > 0 depends only on q. Since H(W + α′X | Y ) /∈ (δ,1 − δ) by
assumption, and we see that if δ is sufficiently small, then H(W + α′X |
Y ) ≤ δ.



7
Conclusion and Related Work

In Section 2, we started by studying a two-by-two combining/splitting
mapping, which transforms two uses of a binary-input memoryless
channel (respectively, two outputs of a memoryless binary source) into
two channels with unequal capacities (respectively, two random vari-
ables with unequal entropies). We then used this mapping recursively
to amplify the difference between the channels (respectively, sources),
and showed that in the limit, this recursion creates only perfect chan-
nels and useless channels (respectively, constant random variables and
uniformly distributed random variables). We then saw that the con-
vergence of the created channels and sources to the limiting values is
fast — almost exponential in the square root of the blocklength. It is
worth noting that this result on the rate of convergence and thus on the
error probability of polar coding is asymptotic, and one may need to go
to impractically large blocklengths to attain the promised exponential
decay in the error probabilities. We also saw empirical evidence for the
unimpressive performance of successive cancellation decoding at small
blocklengths. Fortunately, this evidence also suggested that the error
performance can be improved significantly via simple modifications to
the decoding algorithm, while keeping the computational complexity

372
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at practical levels. All of the results in this section are from [4, 5],
and [9], while the error probability plots for successive cancellation and
list decoding are from [44].

In Section 3, we provided further evidence for the practical rel-
evance of polar codes. The encoding and the successive cancellation
decoding (time and space) complexities were shown to be O(N logN).
We also saw an O(N logN) complexity algorithm, described in [45], to
construct good polar codes for arbitrary channel and source models.
Construction of polar codes was first discussed in [4], and also in [33].
Crucial to the low complexity figures for all algorithms in this section
was the recursive nature of encoding, decoding, and the descriptions of
polarized channels/sources.

In Section 4, we studied polarization for non-binary processes.
Achieving polarization for finite fields with randomized transforms was
first discussed in the original work of Arıkan [4]. We showed that dis-
crete memoryless processes with prime alphabet sizes can be polarized
by a recursive linear transform similar to the original one for binary
processes. We saw that linear transforms fail to polarize all memoryless
processes with composite alphabet sizes. These were first proved in [40];
the proof we saw is from [39]. We then demonstrated a family of non-
linear transforms that polarize stationary memoryless processes with
arbitrary discrete alphabets. The crucial property of all basic polarizing
transforms is their ability to create a high-entropy and a low-entropy
random variable out of two moderate-entropy random variables, irre-
spective of the distribution of the latter. We also derived ‘exponential’
error probability bounds for channel codes (respectively, source codes)
based on the proposed transforms, establishing their capacity-achieving
(respectively, entropy-achieving) properties. Since the results there hold
for codes on all discrete alphabets, one can approach the capacity of
any memoryless channel with continuous inputs by approximating its
capacity-achieving input distribution through the method discussed in
Section 4.3.

It is worth mentioning that several methods have been proposed to
construct polar codes for non-binary alphabets. We discussed one such
method in Section 6, which was based on factorizing the alphabet into
smaller alphabets and polarizing these successively. Techniques that
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achieve similar (but not identical) multilevel polarization effects were
proposed in [2] and [35].

The results in Section 5 were obtained in [26] for the binary case.
Generalizations to the non-binary case were given in [34] and [39].
Here, we first showed that processes with prime alphabet sizes can
be polarized by any linear transform whose matrix representation is
not upper-triangular. This also implies that given any invertible and
non-trivial transform, one can find a decoding order (i.e., a permuta-
tion of the columns of the transform) under which the resulting random
variables are polarized. We observed that the exponential error proba-
bility behavior of recursive polar codes is closely related to the distance
properties of a single recursion. We derived a simple formula that char-
acterizes this behavior. Although we only provided upper bounds on
the error probability in terms of this formula, one can in fact show that
the minimum distance behavior of polar codes is given by the same
formula, and conclude that successive cancellation decoding of polar
codes achieves optimal performance in the exponential sense. We also
saw that the error probability improvements afforded by general con-
structions over Arıkan’s original construction is significant especially
for larger alphabet sizes. One should note, however, that the results on
the error probability are asymptotic, as are the results in Section 2, and
are not very informative about the performance of short polar codes.
Two problems of interest in this direction are to determine whether gen-
eralized transforms yield stronger codes at practically relevant lengths,
and to determine whether reliability gains can be attained by using
non-binary polar codes over binary channels. To that end, one can use
a generalized version of the algorithm given in [45] to evaluate the
performance of various polar code constructions on various channels,
although it is also of interest to develop a theory of polar code design
for practically relevant blocklengths.

In Section 6 we considered polarization for multi-user coding set-
tings. We first showed that all optimal rates for multiple-access channels
and the distributed source coding problems can be achieved using polar
codes at each user. This was first observed in [22] and [25]. We then
showed that applying polarizing transforms to multiple processes sep-
arately not only polarizes the processes, but the correlations are also
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polarized. We saw that coding schemes exploiting this joint polariza-
tion phenomenon achieve some, but not always all, optimal points in
the rate regions of the mentioned problems, with error probabilities
comparable to those of single-user polar coding schemes. The results in
this section are from [41] and [1]. One should note that the unachiev-
ability of certain rate points by this scheme is not due to the way that
the processes are polarized — they are indeed polarized using the same
transform as in the first method discussed above — but rather to the
proposed decoding order, which does not fully exploit the resulting
probability structure. This rate loss is a good example that illustrates
the strong dependence of polarization on how the probability struc-
ture in a process is decomposed through the choice of the decoding
algorithm. Indeed, Arıkan recently showed that any optimal rate point
in two-user settings can be achieved if the decoding order is chosen
suitably [8].

The focus of this monograph was on the fundamentals of polar-
ization theory, we thus had to neglect several interesting early results
in the field. At the time of this writing, polar coding research encom-
passed more than one hundred publications. We will only mention a
few of these results for reference. Our hope is that the material covered
here will familiarize the researcher with the techniques and thus make
related work more accessible.

Some of the early work was on applying polar coding ideas to var-
ious communication scenarios. In [28], it was shown that polar coding
achieves the rate-distortion bound for a symmetric binary source under
Hamming distortion. Later, this result was generalized to arbitrary
sources with prime reconstruction alphabets [24]. Korada showed in [25]
that polar codes also achieve optimal rates in certain instances of the
Gelfand–Pinsker problem, the Wyner–Ziv problem, and the degraded
broadcast channel problem. Polar coding for degraded relay channels
was first studied in [3] where the source-to-destination and the relay-
to-destination channels were assumed orthogonal. Later in [23] it was
shown that polar codes achieve the capacity of general binary-input
symmetric degraded relay channels. Polar codes for special cases of
broadcast channels were discussed in [25] and [15]. Polar coding for
wiretap channels was studied concurrently by several groups. Secrecy
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capacity-achieving properties of polar codes for degraded symmetric
wiretap channels were established independently in [3, 21, 29, 32].
Roughly, all of these results are obtained by showing that the ran-
dom coding arguments used in the canonical achievability proofs can
be mimicked by polar coding. Polar coding for multiple access chan-
nels (Section 6) was extended in [2] to channels with more than two
senders.

As we mentioned above, the original error probability analysis in [9]
(Section 2) is asymptotic, and we saw that polarization does not take
place sufficiently fast to make polar codes useful at short blocklengths.
There has been considerable effort in refining the error probability
analysis of these codes, as well as in improving their performance. In
[46] and [20], the asymptotic analysis of [9] was refined to give rate-
dependent bounds on the error probability. This refinement invokes
the central limit theorem in addition to the law of large numbers used
in the original analysis. Another way to study the error probability–
rate tradeoff is to determine the achievable rates (as a function of the
blocklength) given a target error probability. This ‘scaling’ study was
undertaken in [27] and [16]. As we saw in Section 2.5, performance
improvements were reported in [44] and [7]. Hussami et al. [22] also
reported gains in error probability under belief propagation decod-
ing. Clearly, all of these are encouraging developments in polar coding
research, and thus an understanding of the reasons for these gains is
needed.

Another practical consideration in channel coding is robustness
against uncertainty in the channel. This is often studied as a com-
pound channel problem, where the task is to design a code that will
perform well over all memoryless channels in a given class. Polar cod-
ing for compound channels was considered in [18] by Hassani et al.,
where it was shown that over a compound channel that includes the
binary symmetric and binary erasure channels with equal capacities,
polar codes achieve strictly smaller rates than the compound chan-
nel capacity under SC decoding. In [39, pp. 87–89], it is shown that
this gap to capacity is indeed due to the suboptimality of the SC
decoder, and can be closed by employing optimal decoders at the
receiver. An open problem of interest is to determine whether polar
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codes achieve compound channel capacity under low-complexity decod-
ing algorithms. Uncertainty can also be present in the form of channel
memory. A preliminary result to this end was given in [38], where it
was shown that Arıkan’s construction polarizes a large class of processes
with memory.

Although it has been amply demonstrated that polarization is
a fairly general phenomenon, the extent of the practical and the
theoretical implications of this generality remains largely unknown.
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