|
||
Title: A sequence Post by wmat1234 on Aug 31st, 2007, 7:18am Sequence: x_1 = 1 x_n = x_{n-1} + sqrt(x_{n-1}) what is lim x_n/n^2 |
||
Title: Re: A sequence Post by Eigenray on Aug 31st, 2007, 9:21am Let yn = 2http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/surd.gifxn; then yn+12 = yn2 + 2yn. On the one hand, [hide]yn+12 < (yn+1)2, so yn < n, and limsup yn/n http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/le.gif 1.[/hide] On the other hand, [hide]Clearly xn http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/ge.gif xn-1 + 1, so xn (hence yn) goes to infinity. Now, fix 0<a<1. Then there exists an N such that for n>N, yn > C = a2/[2(1-a)], and therefore yn+12 = yn2 + 2yn > yn2 + 2ayn + a2 = (yn + a)2, so for n>N, yn > C + a(n-N). Therefore liminf yn/n http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/ge.gif a. Since this holds for all a<1, we have liminf yn/n http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/ge.gif 1. Since also yn < n, it follows lim yn/n = 1, and thus lim xn/n2 = 1/4.[/hide] |
||
Powered by YaBB 1 Gold - SP 1.4! Forum software copyright © 2000-2004 Yet another Bulletin Board |