|
||
Title: Compare an Integral and a Number Post by Barukh on Aug 11th, 2004, 10:12am Which number is bigger? 1. [int]0[pi] e^(sin2x) dx 2. 3[pi]/2 |
||
Title: Re: Compare an Integral and a Number Post by Aryabhatta on Aug 11th, 2004, 11:34am let f(x) = e^sin[sup2]x Now f(x) [ge] 1 + sin[sup2]x + (sin4x)/2 So [int]0[pi]f(x)dx > [int]0[pi](1 + sin[sup2]x)dx = 3[pi]/2 as [int]0[pi](sin4x)/2 > 0 and [int]0[pi]sin[sup2]xdx = 2[int]0[pi]/2sin[sup2]xdx = 2[int]0[pi]/2cos[sup2]xdx = [int]0[pi]/2(sin[sup2]x + cos[sup2]x)dx = [pi]/2 |
||
Powered by YaBB 1 Gold - SP 1.4! Forum software copyright © 2000-2004 Yet another Bulletin Board |