wu :: forums (http://www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi)
riddles >> medium >> Bus stop
(Message started by: Altamira_64 on Jul 3rd, 2012, 1:58pm)

Title: Bus stop
Post by Altamira_64 on Jul 3rd, 2012, 1:58pm
A public bus arrives at the bus stop sometime between 6:00 and 6:30.
A passenger arrives at the same bus stop some random time within this time interval. What is the probability that the passenger catches the bus within 5 minutes from the time he arrives at the stop?

Title: Re: Bus stop
Post by towr on Jul 3rd, 2012, 10:23pm
I get [hide]11/36, by drawing a diagram[/hide]

Title: Re: Bus stop
Post by Altamira_64 on Jul 4th, 2012, 1:05am
Well, I get 11/72, which one is correct??

Title: Re: Bus stop
Post by rmsgrey on Jul 4th, 2012, 3:30am
I get 11/72, assuming that the passenger can't catch the bus when the bus arrives first; 11/36 if the bus waits 5 minutes at the stop.

Title: Re: Bus stop
Post by towr on Jul 4th, 2012, 8:43am
I thought it was a bit high...
I had (30*30/2-25*25/2)/900, and somehow ended up with 275/900 (or in other words, I neglected to divide 900-625=275 by 2) ::)

Title: Re: Bus stop
Post by Altamira_64 on Jul 4th, 2012, 9:49am
I assume that the bus can't wait for the passenger, if it arrives first. It has to go.

So I guess that for the first 25 minutes (25/30 of the total time) the probability is stable, 25/30, that is, 1/6.
For the last 5 mins (5/30 of the total time), it decreases linearly and eventually gets to zero.
In effect, the total probability is:
25/30 * 1/6 + 5/30 * 1/6 * 1/2 = 11/72.

Title: Re: Bus stop
Post by rmsgrey on Jul 6th, 2012, 5:10am
I solved it with a diagram - plot bus arrival time against passenger arrival time, and you get a strip between tB=tP and tB=tP+5, the area of which is 1/2 - (1/2)(5/6)(5/6) (the triangle from the main diagonal less the triangle from the other diagonal line) or 11/72

Title: Re: Bus stop
Post by lopez on Jul 12th, 2012, 3:05am
I get 11/72 ::)



Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board