|
||
Title: analysis.. measure Post by MonicaMath on Oct 31st, 2009, 11:06pm Hi, I'm working on product measure and I have this quation H(x,y)=exp(-xy) sin(xy) , in [0,r]X[0,s] r,s>0 why we cannot apply Fubini's Theorem for changing integrals in [0, inf]X[0,inf] ? can we use it if : (1) r=inf, s<inf and (2) r<inf, s=inf ? thanks for helping in advance we can't use |
||
Title: Re: analysis.. measure Post by Eigenray on Nov 1st, 2009, 6:27am Fubini's theorem requires that the integral of the absolute value of the function be finite, in at least one of the three ways of calculating it (but if one is, the other two are). In this case, we have http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif H(x,y) dy = - e-xy(cos xy + sin xy) / (2x), so the integral from nhttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif/x to (n+1)http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif/x is (-1)n e-nhttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif (1+e-http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif)/(2x) and so http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif0http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif |H(x,y)| dy = http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/sum.gif e-nhttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif(1+e-http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif)/(2x) = (ehttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif+1)/(ehttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif-1) * 1/(2x) Now it follows that the integral of |H| over (x,y) http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/in.gif [0,http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif) x [0,http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif), or even [0, r] x [0,http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif), is infinite. Switching the roles of x and y the same is of course true for [0,http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif) x [0,s]. If we take just the positive part, H+ = max(H,0), then http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif H+(x,y) dy = (1+e-http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif)/(2x) http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/sum.gif n even e-nhttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif = ehttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif/(ehttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif-1) * 1/(2x), and similarly for H-, so neither is integrable. |
||
Title: Re: analysis.. measure Post by MonicaMath on Nov 1st, 2009, 6:54am thanks for replay as you always did,,, can we follow the same argument for the function G(x,y)=exp(-xy) sin(x) ??!! |
||
Title: Re: analysis.. measure Post by Eigenray on Nov 1st, 2009, 11:38am This one is more interesting because both http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gifhttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif G(x,y) dx dy and http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gifhttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif G(x,y) dy dx exist and equal http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif/2, but the integral of |G(x,y)| is infinite, so Fubini's theorem does not apply directly (all integrals being from 0 to http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif). Indeed, http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif G(x,y) dy = sin(x)/x, and http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif0M sin(x)/x dx http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/to.gif http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif/2 as M http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/to.gif http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif, but http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif0http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif |sin(x)/x| dx = http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif. Doing it the other way, http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif G(x,y) dx = 1/(1+y2), whose integral converges just fine to http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gif/2, but http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/int.gif |G(x,y)| dx = (ehttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gify+1)/(ehttp://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/pi.gify-1) * 1/(1+y2), and the integral of this diverges due to the behavior as y http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/to.gif 0. So for this one, Fubini applies to one of [0, r]x[0, http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif) and [0, http://www.ocf.berkeley.edu/~wwu/YaBBImages/symbols/infty.gif)x[0, s], but not the other. |
||
Powered by YaBB 1 Gold - SP 1.4! Forum software copyright © 2000-2004 Yet another Bulletin Board |