|
||
Title: f(2007) Post by perash on Jan 4th, 2007, 11:25am if f(1)=2007 n is integers f(1)+f(2)+.......+f(n)=(n^2).f(n) and n>= 1 find f(2007) |
||
Title: Re: f(2007) Post by towr on Jan 4th, 2007, 12:32pm [hide]f(n) = 2007 / (1/2 n(n+1)) f(2007) = 2/2008 = 1/1004[/hide] |
||
Title: Re: f(2007) Post by balakrishnan on Jan 6th, 2007, 10:31am [hide]f(1)+f(2)+..f(n)=n^2 f(n) f(1)+..f(n-1)=(n-1)^2 f(n-1) subtracting the 2,we get f(n)=n^2 f(n)-(n-1)^2 f(n-1) which gives (n^2-1) f(n) =(n-1)^2 f(n-1) or (n+1) f(n)=(n-1) f(n-1) or f(n)=(n-1)/(n+1) f(n-1) which means f(n)=(n-1)/(n+1)*(n-2)/(n)*(n-3)/(n-1)*...(1/3)*f(1) or f(n)=[(n-1)!]/[(n+1)!] *2 * f(1)=2*f(1)/[n(n+1)] which gives f(2007)=2/2008=1/1004[/hide] |
||
Powered by YaBB 1 Gold - SP 1.4! Forum software copyright © 2000-2004 Yet another Bulletin Board |