wu :: forums (http://www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi)
general >> complex analysis >> Maximum modulus principle
(Message started by: kimtahe6 on Jun 20th, 2013, 8:06am)

Title: Maximum modulus principle
Post by kimtahe6 on Jun 20th, 2013, 8:06am
Suppose $D=\Delta^n(a,r)=\Delta(a_1,r_1)\times \ldots  \times \Delta(a_n,r_n) \subset \mathbb{C}^n$

and

$\Gamma =\partial \circ \Delta^n(a,r)=\left \{ z=(z_1, \ldots , z_n)\in \mathbb{C}^n:|z_j-a_j|=r_j,~ j=\overline{1,n}  \right \}$.

Let $f \in \mathcal{H}(D) \cap \mathcal{C}(\overline{D})$.

Prove that: $\sup_{z \in \overline{D] |f(z)|=\sup_{z \in \Gamma} |f(z)|$

I think we apply maximum modulus principle, but i have trouble...
Any help (or hint or another solution) would be greatly appreciated  :-* . Thanks.  



Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board