wu :: forums
« wu :: forums - testing: new math symbols »

Welcome, Guest. Please Login or Register.
Nov 23rd, 2024, 11:57pm

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   suggestions, help, and FAQ
(Moderators: SMQ, ThudnBlunder, Icarus, Eigenray, towr, william wu, Grimbal)
   testing: new math symbols
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: testing: new math symbols  (Read 6480 times)
william wu
wu::riddles Administrator
*****





   
WWW

Gender: male
Posts: 1291
testing: new math symbols  
« on: Aug 12th, 2003, 11:05pm »
Quote Quote Modify Modify

12:00 AM 8/13/2003
 
test:
[smiley=integral.gif] x2 dx [smiley=larrow.gif]  [smiley=infty.gif]
[infty][int]
 
Code:

[smiley=integral.gif] x[sup]2[/sup] dx [smiley=larrow.gif]  [smiley=infty.gif]
[infty][int]

 
> "view all symbols" script not working Sad
> need to batch automate color inversion with photoshop
> some new codes working. enclose infty in brackets to make infinity; planning to use LaTeX keywords ...
 


 
12:41 AM 8/13/2003
 
test:
[smiley=forall.gif][smiley=alpha.gif][smiley=in.gif][smiley=bbq.gif]
 
 


 
1:29 AM 8/13/2003
 
> color inversions done; symbols currently being slowly uploaded (56k modem)
 

useful symbols:
 
line 7: emptyset
 
line 8: alpha, beta, gamma, delta, epsilon, theta, psi, omega
 
line 10: nabla, sum, prod
 
line 13: bbc, bbf, bbg, bbn, bbq, bbr, bbz
 
line 22: notsubset
 
line 23: notapprox, notsupset, notsim
 
line 24: vee, wedge, oplus, otimes, le, subset, subsetq, in
 
line 25: ne, ge, supset, supseteq, owns, notin, equiv, sim, simeq
 
line 26: approx, cong, propto, infty, forall, exists, lnot, bigto
 
line 27: bigleftrightarrow, mapsto, onetoone, onto
 
line 28: onetooneonto
 
line 29: bigvee, bigcap, bigcup, oint, lfloor, rfloor, lceil, rceil, langle, rangle
 
line 32: lessgtr
 
line 34: therefore
 
line 38: subsetneq, ncong
 
line 42: pm, cap, cup


 
check out http://us.metamath.org/symbols/symbols.html for the full list of symbol codes.
 
 
> some of these images may have excessive border space; let me know if they aren't working out, because i can trim them accordingly.
 
test:  
[smiley=1.gif] [smiley=cala.gif] [smiley=infty.gif] [smiley=doteqdot.gif] [smiley=doublecap.gif] [smiley=cphi.gif] [smiley=cdot.gif] [smiley=calx.gif] [smiley=doublebarwedge.gif]
 
Code:

[smiley=1.gif] [smiley=cala.gif] [smiley=infty.gif] [smiley=doteqdot.gif] [smiley=doublecap.gif] [smiley=cphi.gif] [smiley=cdot.gif] [smiley=calx.gif] [smiley=doublebarwedge.gif]

 


3:46 AM 8/13/2003
 
i'll resume tomorrow. let me know if aspects of the forum which normally work properly no longer do; by modifying existing code i may have introduced new bugs
« Last Edit: Aug 16th, 2003, 5:43pm by william wu » IP Logged


[ wu ] : http://wuriddles.com / http://forums.wuriddles.com
Icarus
wu::riddles Moderator
Uberpuzzler
*****



Boldly going where even angels fear to tread.

   


Gender: male
Posts: 4863
Re: testing: new math symbols / new smiley faces  
« Reply #1 on: Aug 13th, 2003, 3:31pm »
Quote Quote Modify Modify

Fantastic! Be sure to add codes for [smiley=pi.gif] and [smiley=partial.gif]. (I see these two will need some trimming to bring the down to the line.) Thanks! This is cool!
IP Logged

"Pi goes on and on and on ...
And e is just as cursed.
I wonder: Which is larger
When their digits are reversed? " - Anonymous
william wu
wu::riddles Administrator
*****





   
WWW

Gender: male
Posts: 1291
Re: testing: new math symbols / new smiley faces  
« Reply #2 on: Aug 13th, 2003, 5:54pm »
Quote Quote Modify Modify

[pi] and [partial] symbols added to drop down menu. yes, this is definitely very cool  Cool
 


 
5:53 PM 8/13/2003
 
test:
 
using ascii letters for variables:
lim(n[to][infty]) [sum]i=1,..,nX[subi][supi] = lim(n[to][infty]) X[sub0][sup0] + X[sub1][sup1] + ... + X[subn][supn] [to] [pi]  
 
Code:

lim(n[to][infty]) [sum][sub]i=1,..,n[/sub]X[subi][supi] = lim(n[to][infty]) X[sub0][sup0] + X[sub1][sup1] + ... + X[subn][supn] [to] [pi]

 
 
=============================
 
using GIF letters [smiley=r.gif], [smiley=n.gif] and [smiley=cx.gif] (cx.gif):
lim([smiley=n.gif][to][infty]) [sum]i=1,..,n[smiley=cx.gif][subi][supi] = lim([smiley=n.gif][to][infty]) [smiley=cx.gif][sub0][sup0] + [smiley=cx.gif][sub1][sup1] + ... + [smiley=cx.gif][subn][supn] [to] [pi]
 
Code:

lim([smiley=n.gif][to][infty]) [sum][sub]i=1,..,n[/sub][smiley=cx.gif][subi][supi] = lim([smiley=n.gif][to][infty]) [smiley=cx.gif][sub0][sup0] + [smiley=cx.gif][sub1][sup1] + ... + [smiley=cx.gif][subn][supn] [to] [pi]

 
hmm. it looks like everything works out if we use the images completely when writing equations. however, that would be too annoying.
 


 
6:12 PM 8/13/2003
 
test material for trimming:
 

[forall]r,s[in][bbr], [exists]t[in][bbq] min(r,s) < t < max(r,s)
 
[int]x[sup2]dx = (1/3)x[sup3] + C
 
[lnot](E[sub1][perp]E[sub2])[bigto] Pr([bigcap]i=1,2E[subi]) = Pr(E[sub1][cap]E[sub2]) [ne] Pr(E[sub1])Pr(E[sub2])
 
lim(n[to][infty]) { ([sum]i=1[supn] 1/i) - ln n } [to][gamma][approx].57721  
 
(d/dx)[smiley=cgamma.gif]|x=1 = -[gamma]
 
x[n][oplus]y[n][bigto]X(z)R(z) ; x(t)[oplus]y(t)[bigleftrightarrow]X(f)Y(f)
 
[calf]-1[X(j[omega])] = x(t)= (2[pi])-1[int]-oooox(t)e-jwtd[omega]
 
sin[theta]([partial]/[partial]r)(r[sup2]([partial]u/[partial]r)) + ([partial]/[partial][theta])([partial]u/[partial][theta]) = 0
 
[forall]u,v[in][bbc][supn] |[langle]u,v[rangle]|[le][parallel]u[parallel][cdot][parallel]v[parallel]
 
[wutang]: [forall]k[in]{m|m[in][bbz][wedge]m[ge]2[wedge]([forall]n[in][bbz]:m[ne]b[supn])} [nexists]q[in][bbq] (logbk = [pi][cdot]q)

 
Code:

[forall]r,s[in][bbr], [exists]t[in][bbq] min(r,s) < t < max(r,s)
 
[int]x[sup2]dx = (1/3)x[sup3] + C
 
[lnot](E[sub1][perp]E[sub2])[bigto] Pr([bigcap][sub]i=1,2[/sub]E[subi]) = Pr(E[sub1][cap]E[sub2]) [ne] Pr(E[sub1])Pr(E[sub2])
 
lim(n[to][infty]) { ([sum][sub]i=1[/sub][supn] 1/i) - ln n } [to][gamma][approx].57721  
 
(d/dx)[smiley=cgamma.gif]|[sub]x=1[/sub] = -[gamma]
 
x[n][oplus]y[n][bigto]X(z)R(z) ; x(t)[oplus]y(t)[bigleftrightarrow]X(f)Y(f)
 
[calf][sup]-1[/sup][X(j[omega])] = x(t)= (2[pi])[sup]-1[/sup][int][sub]-oo[/sub][sup]oo[/sup]x(t)e[sup]-jwt[/sup]d[omega]
 
sin[theta]([partial]/[partial]r)(r[sup2]([partial]u/[partial]r)) + ([partial]/[partial][theta])([partial]u/[partial][theta]) = 0
 
[forall]u,v[in][bbc][supn] |[langle]u,v[rangle]|[le][parallel]u[parallel][cdot][parallel]v[parallel]
 
[wutang]: [forall]k[in]{m|m[in][bbz][wedge]m[ge]2[wedge]([forall]n[in][bbz]:m[ne]b[supn])} [nexists]q[in][bbq] (log[sub]b[/sub]k = [pi][cdot]q)

 
 


 
2:45 AM 8/15/2003
 
trimming done. some of the symbols still look a bit off (e.g. magnitude bars), but that's the best i can do unless i modify non-blank area on the images, which is more work than i'd like to do right now Smiley
 
 
 
3:25 AM 8/16/2003
 
"view all symbols" script fixed
« Last Edit: Aug 18th, 2003, 3:26am by william wu » IP Logged


[ wu ] : http://wuriddles.com / http://forums.wuriddles.com
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board