Author |
Topic: Cubic Diophantine Equation (Read 1502 times) |
|
Barukh
Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://yozh.org/wp/wp-content/uploads/2011/03/julia_in_purple-600x343.jpg)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 2276
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Cubic Diophantine Equation
« on: Oct 31st, 2008, 10:15am » |
Quote Modify
|
Let p = 2n + 1 be a prime number. How many integer solutions mod p has the following equation: y2 - x3 + 3x - 1 = 0 mod p Note: The equation was changed.
|
« Last Edit: Oct 31st, 2008, 9:47pm by Barukh » |
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://manetheren.bigw.org/~ray/eigenray.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 1948
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #1 on: Oct 31st, 2008, 3:36pm » |
Quote Modify
|
Well, to start with, it is the integer closest to p which is congruent to the coefficient of xp-1 in -(x3-3x+1)(p-1)/2.
|
« Last Edit: Oct 31st, 2008, 10:19pm by Eigenray » |
IP Logged |
|
|
|
Barukh
Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://yozh.org/wp/wp-content/uploads/2011/03/julia_in_purple-600x343.jpg)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 2276
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #2 on: Oct 31st, 2008, 9:45pm » |
Quote Modify
|
Sorry, I mis-stated the problem (which made it much harder IMHO). Let's try to go with the easier one first... Sorry for inconvenience.
|
|
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://manetheren.bigw.org/~ray/eigenray.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 1948
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #3 on: Oct 31st, 2008, 10:25pm » |
Quote Modify
|
Yes that is much easier. But why is p a Fermat prime? It's enough that p is not 1 mod 3. Or did you have a different proof in mind? Theorem: For a cubic polynomial f(x), the number of solutions to y2 f(x) mod p is congruent, mod p, to the coefficient of xp-1 in -f(x)(p-1)/2. But I've seen this result before so it would feel like cheating to give the proof right away. Does someone else want to try?
|
« Last Edit: Oct 31st, 2008, 10:52pm by Eigenray » |
IP Logged |
|
|
|
Barukh
Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://yozh.org/wp/wp-content/uploads/2011/03/julia_in_purple-600x343.jpg)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 2276
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #4 on: Nov 1st, 2008, 12:26am » |
Quote Modify
|
on Oct 31st, 2008, 10:25pm, Eigenray wrote:It's enough that p is not 1 mod 3. Or did you have a different proof in mind? |
| No, your condition is sufficient, and the proof I had in mind uses this condition. My formulation is a special case of that. Quote:Theorem: For a cubic polynomial f(x), the number of solutions to y2 f(x) mod p is congruent, mod p, to the coefficient of xp-1 in -f(x)(p-1)/2. |
| I haven't heard about this theorem before, but after seeing it, it does make sense, and probably is based on Euler criterion for quadratic residues.
|
|
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://manetheren.bigw.org/~ray/eigenray.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 1948
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #5 on: Nov 1st, 2008, 6:31pm » |
Quote Modify
|
It suddenly hit me that there's a simpler solution that I didn't notice because I had been thinking about the harder problem: everything is a cube.
|
« Last Edit: Nov 1st, 2008, 6:32pm by Eigenray » |
IP Logged |
|
|
|
Barukh
Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://yozh.org/wp/wp-content/uploads/2011/03/julia_in_purple-600x343.jpg)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 2276
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #6 on: Nov 2nd, 2008, 8:31am » |
Quote Modify
|
on Nov 1st, 2008, 6:31pm, Eigenray wrote: If I get you right, yes, that's the solution I had in mind. Very nice!
|
|
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://manetheren.bigw.org/~ray/eigenray.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 1948
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #7 on: Nov 2nd, 2008, 11:50am » |
Quote Modify
|
Here are two related problems: how many solutions are there to: (1) y2 = x3 + ax mod p, p a Mersenne prime (2) y2 = x3 + ax2 mod p. Both can be answered using the theorem I quoted, but there are also more direct(?) proofs.
|
« Last Edit: Nov 2nd, 2008, 11:51am by Eigenray » |
IP Logged |
|
|
|
Barukh
Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://yozh.org/wp/wp-content/uploads/2011/03/julia_in_purple-600x343.jpg)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 2276
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #8 on: Nov 3rd, 2008, 11:38pm » |
Quote Modify
|
on Nov 2nd, 2008, 11:50am, Eigenray wrote:Here are two related problems: how many solutions are there to: (1) y2 = x3 + ax mod p, p a Mersenne prime (2) y2 = x3 + ax2 mod p. |
| Assuming a 0 mod p, I get the following: 1) p 2) p - (a/p), where the last is Legendre symbol.
|
|
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://manetheren.bigw.org/~ray/eigenray.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 1948
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Cubic Diophantine Equation
« Reply #9 on: Nov 4th, 2008, 11:11pm » |
Quote Modify
|
Yep. I thought it was interesting how the three problems can be solved individually using quite distinct arguments, or all using that one theorem I quoted.
|
|
IP Logged |
|
|
|
|