Author |
Topic: Unique subgroup of a finite group (Read 1058 times) |
|
Michael Dagg
Senior Riddler
   

Gender: 
Posts: 500
|
 |
Unique subgroup of a finite group
« on: Jan 4th, 2007, 9:21pm » |
Quote Modify
|
Suppose H is a normal subgroup of a finite group G such that (|H|,|G:H|) = 1. Is H the unique subgroup of G having order |H| ?
|
« Last Edit: Jan 4th, 2007, 10:41pm by Michael Dagg » |
IP Logged |
Regards, Michael Dagg
|
|
|
ecoist
Senior Riddler
   

Gender: 
Posts: 405
|
 |
Re: Unique subgroup of a finite group
« Reply #1 on: May 14th, 2007, 8:44pm » |
Quote Modify
|
Don't know why this problem has gone so long without a posted solution. Just thought of an approach that differs from my first (number-theoretic) idea for a solution. What about using the following result? Let H be a subgroup of the finite group G which contains the normalizer N(P) of a Sylow p-subgroup P of G. Then H is its own normalizer in G. Pardon me for not posting a solution, but I don't want to spoil things for those for whom group theory is a new and fascinating subject.
|
|
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
    

Gender: 
Posts: 1948
|
 |
Re: Unique subgroup of a finite group
« Reply #2 on: May 14th, 2007, 10:35pm » |
Quote Modify
|
My first thought was that this is "obvious" if G is solvable (Hall), but I didn't think about the general case very much. But then I saw the word "Sylow" and it just clicked: Let K G with |K|=|H|. If p | |H|, then Sylow p-subgroups P,P' of H,K are also Sylow p-subgroups of G, so they are conjugate in G. But since H is normal, we must have P' K H. Since this holds for all such p, we have |H| | |K H|, hence K=H. What did group theorists do before Sylow?
|
|
IP Logged |
|
|
|
ecoist
Senior Riddler
   

Gender: 
Posts: 405
|
 |
Re: Unique subgroup of a finite group
« Reply #3 on: May 15th, 2007, 3:16pm » |
Quote Modify
|
As usual, Eigenray's solution is the best, but consider the following equally short solution as well. Let H have order n and let k=[G:H]. Let x be any element of G of order dividing n. In the factor group G/H, xk=1 (mod H) and, since x has order dividing n in G, xn=1 (mod H). Since there exist integers u and v such that nu+kv=1, we have x1=(xn)u.(xk)v)=1 (mod H). Hence x lies in H; whence H is the unique subgroup of order n in G.
|
|
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
    

Gender: 
Posts: 1948
|
 |
Re: Unique subgroup of a finite group
« Reply #4 on: May 16th, 2007, 1:29am » |
Quote Modify
|
Actually I like yours better. It shows that H = {x | xn = 1}. As a followup: Show that G is a Frobenius group, with Frobenius kernel H, iff xn=1 or xk=1 for all x in G.
|
|
IP Logged |
|
|
|
Michael Dagg
Senior Riddler
   

Gender: 
Posts: 500
|
 |
Re: Unique subgroup of a finite group
« Reply #5 on: May 18th, 2007, 12:22pm » |
Quote Modify
|
Neat solutions!
|
|
IP Logged |
Regards, Michael Dagg
|
|
|
|