wu :: forums
« wu :: forums - Lacunary values »

Welcome, Guest. Please Login or Register.
Jan 28th, 2025, 9:33am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   putnam exam (pure math)
(Moderators: towr, Eigenray, SMQ, Grimbal, william wu, Icarus)
   Lacunary values
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Lacunary values  (Read 835 times)
Icarus
wu::riddles Moderator
Uberpuzzler
*****



Boldly going where even angels fear to tread.

   


Gender: male
Posts: 4863
Lacunary values  
« on: Dec 14th, 2006, 6:32am »
Quote Quote Modify Modify

This one is fairly simple, but I thought I would post it anyway.
 
A Lacunary value of a complex function is simply a complex number that the function never takes on as a value.
 
Picard's Great Theorem says that an analytic function with an isolated essential singularity can have at most 1 lacunary value (provided its domain includes an entire deleted neighborhood of the singularity).
 
Prove the following:
(1) If a meromorphic function has an isolated essential singularity, then it can have at most 2 lacunary values.
(2) Picard's Little Theorem: An entire function has at most 1 lacunary value.
(3) A function which is meromorphic on the entire plane can have at most 2 lacunary values.
(4) None of the results can be bettered (i.e. there exist meromorphic functions with essential singularities and 2 lacunary values).
 
[edited after a little reading made me realize I had it turned around - the problem used to have the little theorem as given, and asked for a proof of the great theorem. The great theorem is the more fundamental. (Also added the "great" vs "little" terminology, which I had not heard before.)]
 
Also, does anyone have a good proof for the great theorem?
 
My own reference (Ahlfors) reproduces Picard's own proof of the little theorem, based on the modular function and the monodromy theorem, but no mention is made of the great theorem. I recall that when I studied C.A. in college, the professor took us instead through a proof of the great theorem, but I now remember no details of it. I've searched through all the links on Google, but the best I was able to find was an assignment to prove it from a result by Montel: A sequence of holomorphic functions all having 0 and 1 as lacunary values must have a subsequence that converges uniformly on compact sets to a function in C*. The assignment suggested considering the sequence {f(z/n)}, where f has an essential singularity at 0. I'm sure I could work that out, but I am really interested in how the result from Montel is proved, since the deep mathematics is there.
« Last Edit: Dec 30th, 2006, 8:45am by Icarus » IP Logged

"Pi goes on and on and on ...
And e is just as cursed.
I wonder: Which is larger
When their digits are reversed? " - Anonymous
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board