wu :: forums
« wu :: forums - Only the trivial ring adds this way »

Welcome, Guest. Please Login or Register.
Jan 28th, 2025, 9:49am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   putnam exam (pure math)
(Moderators: Icarus, Grimbal, william wu, towr, Eigenray, SMQ)
   Only the trivial ring adds this way
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Only the trivial ring adds this way  (Read 551 times)
ecoist
Senior Riddler
****





   


Gender: male
Posts: 405
Only the trivial ring adds this way  
« on: Dec 13th, 2006, 2:28pm »
Quote Quote Modify Modify

Let R be a ring whose additive structure is the rationals under addition modulo 1.  Show that all products in R equal 0.
IP Logged
Eigenray
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 1948
Re: Only the trivial ring adds this way  
« Reply #1 on: Dec 14th, 2006, 2:26pm »
Quote Quote Modify Modify

(a/b)*(c/d)
 = (a/b)*(bc/bd)
 = (a/b)*(c/bd + ... + c/bd)   [b times]
 = (a/b)*(c/bd) + ... + (a/b)*(c/bd)
 = (a/b + ... + a/b)*(c/bd)
 = (a)*(c/bd)
 = 0*(c/bd)
[ = (0+0)*(c/bd)
 = 0*(c/bd) + 0*(c/bd)
 = (a/b)*(c/d) + (a/b)*(c/d)]
 
so (a/b)*(c/d) = 0.
 
Or: A multiplication on a ring with additive group G is an element of HomZ( G (x)Z G, G).  But if G is divisible and torsion, then G (x)Z G = 0.
IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board