wu :: forums
« wu :: forums - Fibonacci convergence... »

Welcome, Guest. Please Login or Register.
Dec 1st, 2024, 1:22am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   putnam exam (pure math)
(Moderators: Eigenray, Grimbal, william wu, towr, SMQ, Icarus)
   Fibonacci convergence...
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Fibonacci convergence...  (Read 591 times)
Michael Dagg
Senior Riddler
****






   


Gender: male
Posts: 500
Fibonacci convergence...  
« on: Jun 23rd, 2006, 8:01am »
Quote Quote Modify Modify

Let F be Fibonacci. Discuss the convergence of  
 
H = F_1 + sqrt(F_2 + sqrt(F_3 + sqrt(F_4 + ...))).
IP Logged

Regards,
Michael Dagg
Barukh
Uberpuzzler
*****






   


Gender: male
Posts: 2276
Re: Fibonacci convergence...  
« Reply #1 on: Jun 25th, 2006, 4:32am »
Quote Quote Modify Modify

Here’s my attempt on the solution.
 
1. Define Hn = F1 + sqrt(F2 + sqrt(…+sqrt(Fn)…). Then {Hn} is monotonically increasing sequence.
 
2. Define Gn = 21 + sqrt(22 + sqrt(…+sqrt(2n)…). Because Fn < 2n, it follows that Fn < Gn.
 
3. Define also In = 21sqrt(22sqrt(…sqrt(2n)…), where every addition is substituted by a product. It is easy to see that Gn <= In.
 
4. But In = 2En, where En = sum i21-i. This last sequence has a finite limit (vis. 4).  
 
5. Therefore, Hn < 16, and converges.
 
Of course, better estimates can be obtained, together with much more general results.
IP Logged
Barukh
Uberpuzzler
*****






   


Gender: male
Posts: 2276
Re: Fibonacci convergence...  
« Reply #2 on: Jun 25th, 2006, 11:47pm »
Quote Quote Modify Modify

A better estimate is obtained by using the following identity: (2n+1)2 = 22n+(2n+1+1), therefore
 
3 = (21+1) = sqrt(22+(22+1)) = sqrt(22+sqrt(24+(23+1))) = … = sqrt(22+sqrt(24+ sqrt(26+…))).
 
Now, because Fn < 22n-2, it follows H < 4.
IP Logged
towr
wu::riddles Moderator
Uberpuzzler
*****



Some people are average, some are just mean.

   


Gender: male
Posts: 13730
Re: Fibonacci convergence...  
« Reply #3 on: Jun 26th, 2006, 2:40am »
Quote Quote Modify Modify

In a similar way as above, I've tried using
(sqrt(2)n + 1)2 = 2n + 2 sqrt(2)n + 1 > 2n + sqrt(2)n+1 + 1  
F(n) <= 2n-2 for n >= 2  
 
2 = sqrt(2)0 + 1
> sqrt(20 + (sqrt(2)1 + 1))  
> sqrt(20 + sqrt(21 + (sqrt(2)2 + 1)))  
> sqrt(20 + sqrt(21 +  sqrt(22 + ... )))  
>= sqrt(F(2) + sqrt(F(3) + ...))
 
1 + 2 = 3 > H
 
[edit]finally found where I went wrong..[/edit]
« Last Edit: Jun 26th, 2006, 3:03am by towr » IP Logged

Wikipedia, Google, Mathworld, Integer sequence DB
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board