Author |
Topic: Compare an Integral and a Number (Read 464 times) |
|
Barukh
Uberpuzzler
Gender:
Posts: 2276
|
|
Compare an Integral and a Number
« on: Aug 11th, 2004, 10:12am » |
Quote Modify
|
Which number is bigger? 1. [int]0[pi] e^(sin2x) dx 2. 3[pi]/2
|
|
IP Logged |
|
|
|
Aryabhatta
Uberpuzzler
Gender:
Posts: 1321
|
|
Re: Compare an Integral and a Number
« Reply #1 on: Aug 11th, 2004, 11:34am » |
Quote Modify
|
let f(x) = e^sin[sup2]x Now f(x) [ge] 1 + sin[sup2]x + (sin4x)/2 So [int]0[pi]f(x)dx > [int]0[pi](1 + sin[sup2]x)dx = 3[pi]/2 as [int]0[pi](sin4x)/2 > 0 and [int]0[pi]sin[sup2]xdx = 2[int]0[pi]/2sin[sup2]xdx = 2[int]0[pi]/2cos[sup2]xdx = [int]0[pi]/2(sin[sup2]x + cos[sup2]x)dx = [pi]/2
|
|
IP Logged |
|
|
|
|