Author |
Topic: Pell equations (Read 650 times) |
|
Christine
Full Member
Posts: 159
|
|
Pell equations
« on: Sep 29th, 2015, 11:10pm » |
Quote Modify
|
can you find solutions to x^2 + k*y^2 = a^2 x^2 - k*y^2 = b^2 for k = 13,31,37,46,47,53,61,71,79 with GCD (x,y) = 1
|
|
IP Logged |
|
|
|
pex
Uberpuzzler
Gender:
Posts: 880
|
|
Re: Pell equations
« Reply #1 on: Sep 30th, 2015, 4:38pm » |
Quote Modify
|
For k=46, x=7585 and y=924 works.
|
|
IP Logged |
|
|
|
pex
Uberpuzzler
Gender:
Posts: 880
|
|
Re: Pell equations
« Reply #3 on: Oct 5th, 2015, 7:11pm » |
Quote Modify
|
For k=13, there's x=106921 and y=19380. (Yes, I'm just running a simple brute force search.)
|
|
IP Logged |
|
|
|
pex
Uberpuzzler
Gender:
Posts: 880
|
|
Re: Pell equations
« Reply #4 on: Oct 16th, 2015, 11:38pm » |
Quote Modify
|
Current status: 1069212 + 13*193802 = 1277292 1069212 - 13*193802 = 809292 25665612 + 31*2066402 = 28126392 25665612 - 31*2066402 = 22942392 75852 + 46*9242 = 98392 75852 - 46*9242 = 42732 129746412 + 71*5636402 = 138165592 129746412 - 71*5636402 = 120741592
|
« Last Edit: Dec 21st, 2015, 7:02am by pex » |
IP Logged |
|
|
|
|