Author |
Topic: semi perimeter a square (Read 2553 times) |
|
Christine
Full Member
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif)
Posts: 159
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
semi perimeter a square
« on: Mar 30th, 2014, 1:26pm » |
Quote Modify
|
Can you find a triangle whose area, sides are integers and the semi perimeter is a square? Is there an algorithm to generate them?
|
|
IP Logged |
|
|
|
pex
Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 880
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: semi perimeter a square
« Reply #1 on: Mar 30th, 2014, 5:27pm » |
Quote Modify
|
on Mar 30th, 2014, 1:26pm, Christine wrote:Can you find a triangle whose area, sides are integers and the semi perimeter is a square? |
| Yes. The simplest triangle with integer sides and area that I can think of has sides 3,4,5. Its semiperimeter is 6, so scaling the whole thing up by a factor of 6 works: the 18,24,30 triangle fits the requirements.
|
|
IP Logged |
|
|
|
Christine
Full Member
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif)
Posts: 159
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: semi perimeter a square
« Reply #2 on: Apr 10th, 2014, 3:18pm » |
Quote Modify
|
on Mar 30th, 2014, 5:27pm, pex wrote: Yes. The simplest triangle with integer sides and area that I can think of has sides 3,4,5. Its semiperimeter is 6, so scaling the whole thing up by a factor of 6 works: the 18,24,30 triangle fits the requirements. |
| Thanks. I'm looking for a primitive Heronian triangle
|
|
IP Logged |
|
|
|
towr
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif) Some people are average, some are just mean.
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 13730
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: semi perimeter a square
« Reply #3 on: Apr 10th, 2014, 11:13pm » |
Quote Modify
|
The smallest primitive with those properties is 8,5,5 (which is just 2 (5,4,3)'s put together) You can generate a list based on http://en.wikipedia.org/wiki/Heronian_triangle#Exact_formula_for_Heronia n_triangles e.g. Python Code:from fractions import gcd for m in range(1000): for n in range(1,m+1): for k in range(int(((m**2*n)/(2*m+n))**0.5-1), int((m*n)**0.5)+1): if gcd(m,gcd(n,k))==1 and m*n > k**2 >= (m**2*n)/(2*m+n) and m>=n>=1: a = n*(m**2+k**2) b = m*(n**2+k**2) c = (n+m)*(m*n-k**2) g = gcd(a,gcd(b,c)) a /= g b /= g c /= g s = (a+b+c)/2 if int(s**0.5)**2==s: print (m,n,k, a,b,c, (a+b+c)/2) |
| (697, 657, 104) is the first I've found to also have a square area.
|
« Last Edit: Apr 10th, 2014, 11:18pm by towr » |
IP Logged |
Wikipedia, Google, Mathworld, Integer sequence DB
|
|
|
|