Author |
Topic: three square numbers (Read 3490 times) |
|
Christine
Full Member
Posts: 159
|
|
three square numbers
« on: Aug 15th, 2013, 1:00pm » |
Quote Modify
|
To find three numbers (x, y, z) such that x + (x*y*z) y + (x*y*z) z + (x*y*z) are all squares one possible solution: x = 1/9, y = 9/9 and z = 40/9 any other solution? Please show your analytical solution
|
|
IP Logged |
|
|
|
towr
wu::riddles Moderator Uberpuzzler
Some people are average, some are just mean.
Gender:
Posts: 13730
|
|
Re: three square numbers
« Reply #1 on: Aug 18th, 2013, 7:08am » |
Quote Modify
|
Plenty of other solutions, here's a few with numerator and divisor under 100: 1/24 2/24 12/24 1/8 4/8 34/8 1/48 8/48 96/48 1/9 9/9 40/9 1/12 12/12 52/12 1/15 17/15 30/15 1/4 20/4 64/4 1/32 34/32 64/32 1/23 46/23 49/23 2/8 13/8 20/8 2/8 17/8 36/8 2/40 20/40 41/40 3/12 32/12 80/12 4/24 6/24 25/24 4/13 13/13 68/13 4/12 16/12 39/12 4/44 16/44 55/44 4/72 18/72 73/72 4/88 22/88 89/88 4/56 26/56 35/56 4/56 61/56 70/56 5/12 12/12 68/12 5/44 36/44 44/44 6/24 20/24 29/24 7/28 16/28 32/28 8/32 36/32 41/32 9/72 49/72 72/72 9/36 52/36 64/36 9/56 56/56 65/56 12/48 20/48 53/48 14/56 36/56 65/56 36/72 81/72 98/72 But I haven't found a way to generate them, other than trying. I suspect there are probably infinitely many even of just the form 1/d, d/d, a/d; which might be easier to find a formula for. a/d seems to converge on 4 (with a notable outlier) 1/9 9/9 40/9 1/12 12/12 52/12 1/28 28/28 116/28 1/33 33/33 136/33 1/44 44/44 980/44 1/57 57/57 232/57 1/64 64/64 260/64 1/96 96/96 388/96 1/105 105/105 424/105 1/145 145/145 584/145 1/156 156/156 628/156 1/204 204/204 820/204 1/217 217/217 872/217 1/273 273/273 1096/273 1/288 288/288 1156/288 1/352 352/352 1412/352 1/369 369/369 1480/369 1/441 441/441 1768/441 1/460 460/460 1844/460 1/540 540/540 2164/540 1/561 561/561 2248/561 1/649 649/649 2600/649 1/672 672/672 2692/672 1/768 768/768 3076/768 1/793 793/793 3176/793 1/897 897/897 3592/897 1/924 924/924 3700/924 1/1036 1036/1036 4148/1036 1/1065 1065/1065 4264/1065 1/1185 1185/1185 4744/1185 1/1216 1216/1216 4868/1216 1/1344 1344/1344 5380/1344 1/1377 1377/1377 5512/1377 1/1513 1513/1513 6056/1513 1/1548 1548/1548 6196/1548 1/1692 1692/1692 6772/1692 1/1729 1729/1729 6920/1729 1/1881 1881/1881 7528/1881 1/1920 1920/1920 7684/1920 1/2080 2080/2080 8324/2080 1/2121 2121/2121 8488/2121 1/2289 2289/2289 9160/2289 1/2332 2332/2332 9332/2332
|
|
IP Logged |
Wikipedia, Google, Mathworld, Integer sequence DB
|
|
|
towr
wu::riddles Moderator Uberpuzzler
Some people are average, some are just mean.
Gender:
Posts: 13730
|
|
Re: three square numbers
« Reply #2 on: Aug 18th, 2013, 8:06am » |
Quote Modify
|
One generic solution is 1/d, d/d, (4d+4)/d, with d=5k2+/-4k 1/d + 4(d+1)/d2 = [d + 4(d+1)]/d2 = [5d + 4]/d2 = [25k2+/-20k + 4]/d2 = [(5k +/- 2)/d]2 1 + 4(d+1)/d2 = [d2 + 4(d+1)]/d2 = [(d+2)/d]2 4(d+1)/d + 4(d+1)/d2 = [4(d+1)d + 4(d+1)]/d^2 = [2(d+1)/d]2
|
|
IP Logged |
Wikipedia, Google, Mathworld, Integer sequence DB
|
|
|
|