wu :: forums
« wu :: forums - Radical power equality »

Welcome, Guest. Please Login or Register.
Nov 25th, 2024, 4:27am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   medium
(Moderators: william wu, Grimbal, SMQ, towr, Eigenray, ThudnBlunder, Icarus)
   Radical power equality
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Radical power equality  (Read 1133 times)
Michael Dagg
Senior Riddler
****






   


Gender: male
Posts: 500
Radical power equality  
« on: Feb 4th, 2008, 7:20pm »
Quote Quote Modify Modify

Let positive integers  a, n  be given.  Show that  
there is a positive integer  b  for which
 
(sqrt(a) - sqrt(a - 1))^n  =  sqrt(b) - sqrt(b - 1).
 
IP Logged

Regards,
Michael Dagg
Eigenray
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 1948
Re: Radical power equality  
« Reply #1 on: Feb 4th, 2008, 8:04pm »
Quote Quote Modify Modify

First, if n=2, we take b=(2a-1)2.  Now by replacing a with b, and n by n/2, repeatedly, we can assume n=2k+1 is odd  In this case,
 
hidden:
[a - (a-1)]n = ca - d(a-1), where
 
c = C(2k+1,2i+1) ai(a-1)k-i,
d = C(2k+1,2i) ai(a-1)k-i.
 
But we have also [a + (a-1)]n = ca + d(a-1), and multiplying these two equations gives
 
1 = ([a - (a-1)][a + (a-1)])n = [ca - d(a-1)][ca + d(a-1)] = c2a - d2(a-1),
 
and therefore we take b = c2a:
 
(a - (a-1))n = (c2a) - (d2(a-1)) = (c2a) - (c2a-1).
IP Logged
Michael Dagg
Senior Riddler
****






   


Gender: male
Posts: 500
Re: Radical power equality  
« Reply #2 on: Feb 5th, 2008, 3:42pm »
Quote Quote Modify Modify

Clever (and economical) !   Wink
IP Logged

Regards,
Michael Dagg
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board