Author |
Topic: sequence (Read 374 times) |
|
tony123
Junior Member
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif)
Posts: 61
|
K(n+2)=3k(n+1) - K(n) , k1=20 sequence 20,30,70,180,470,1230,... find all natural numbers such that 1+5K(n) k(n+1) is a perfect squer
|
|
IP Logged |
|
|
|
srn437
Newbie
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif) the dark lord rises again....
Posts: 1
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: sequence
« Reply #1 on: Aug 27th, 2007, 10:48am » |
Quote Modify
|
Is infinity a natural number?
|
|
IP Logged |
|
|
|
pex
Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 880
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: sequence
« Reply #2 on: Aug 27th, 2007, 11:04am » |
Quote Modify
|
on Aug 27th, 2007, 10:48am, srn347 wrote:Is infinity a natural number? |
| No. A few questions for Tony: are K(n) and k(n) the same? And is K(n) k(n+1) supposed to be multiplication? Is there any significance to you posting only the single initial value k1 (I suppose this is K(1)), while the recursion is of second degree?
|
|
IP Logged |
|
|
|
ThudnBlunder
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBAttachments/Eamon7.gif)
The dewdrop slides into the shining Sea
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 4489
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: sequence
« Reply #3 on: Aug 27th, 2007, 12:27pm » |
Quote Modify
|
A start: k(n) = 10* (2n-1), the 2n-1th Lucas number
|
« Last Edit: Aug 27th, 2007, 2:47pm by ThudnBlunder » |
IP Logged |
THE MEEK SHALL INHERIT THE EARTH.....................................................................er, if that's all right with the rest of you.
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://manetheren.bigw.org/~ray/eigenray.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 1948
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: sequence
« Reply #4 on: Aug 27th, 2007, 1:53pm » |
Quote Modify
|
Numerically we might note (1 + 5knkn+1)1/2 ~ kn+kn+1. In fact, 1 + 5knkn+1 = (kn+kn+1)2 + 501. Proof: kn satisfies a second-order recurrence with characteristic polynomial x2 - 3x + 1, whose roots are r, r' = (3 5)/2, so kn is a linear combination of rn and r'n. Therefore both sides are linear combinations of r2n, r'2n, and (rr')n=1, so they both satisfy the same third-order recurrence (with characteristic polynomial (x-1)(x-r2)(x-r'2) = x3 - 8x2 + 8x - 1). So it suffices to check both sides agree for n=1,2,3. Now, x2 = y2 + 501 is impossible for x > (501+1)/2 = 251, so we only need to check n for which 1+5knkn+1 2512, i.e., n 3, and we find n=3 as the only solution: 1 + 5k3k4 = (k3+k4)2 + 501 = 2502 + 501 = 2512.
|
|
IP Logged |
|
|
|
|