Author |
Topic: Sum The Odd Powers, Get Real Triplets (Read 336 times) |
|
K Sengupta
Senior Riddler
Gender:
Posts: 371
|
|
Sum The Odd Powers, Get Real Triplets
« on: Jul 27th, 2007, 8:10am » |
Quote Modify
|
Analytically determine all possible real triplets (p, q, r) satisfying: p+q+r = 0 P3 + q3 + r3 = 18 p7 + q7 + r7 = 2058
|
|
IP Logged |
|
|
|
Eigenray
wu::riddles Moderator Uberpuzzler
Gender:
Posts: 1948
|
|
Re: Sum The Odd Powers, Get Real Triplets
« Reply #1 on: Aug 5th, 2007, 3:34am » |
Quote Modify
|
hidden: | Since p+q+r=0, we have f(x) = (x-p)(x-q)(x-r) = x3 - ax - b, where a = -(pq + qr + pr), and b = pqr. Thus xk = axk-2 + bxk-3 when x = p,q, or r, and so if sk = pk + qk + rk, then sk = ask-2 + bk-3. Also note that s2 = s12 + 2a = 2a. Now, 18 = s3 = as1 + b0 = 3b implies b=6, and then 2058 = s7 = as5 + 6s4 = a(as3 + 6s2) + 6(as2 + 6s1) = a(18a + 12a) + 6(2a2) = 42a2, or a = 7. So {p,q,r} satisfy the cubic x3 7x - 6 = 0. If a=-7, the discriminant is 4(7)3 + 27(-6)2 > 0, so the roots are not all real. If a=7, we get x3 - 7x - 6 = (x+1)(x+2)(x-3), so {p,q,r} = {-1,-2,3}. |
|
« Last Edit: Aug 5th, 2007, 3:37am by Eigenray » |
IP Logged |
|
|
|
|