wu :: forums
« wu :: forums - Sum The Odd Powers, Get Real Triplets »

Welcome, Guest. Please Login or Register.
Nov 25th, 2024, 8:44am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   medium
(Moderators: ThudnBlunder, william wu, SMQ, Icarus, towr, Eigenray, Grimbal)
   Sum The Odd Powers, Get Real Triplets
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Sum The Odd Powers, Get Real Triplets  (Read 336 times)
K Sengupta
Senior Riddler
****





   


Gender: male
Posts: 371
Sum The Odd Powers, Get Real Triplets  
« on: Jul 27th, 2007, 8:10am »
Quote Quote Modify Modify

Analytically determine all possible real triplets (p, q, r) satisfying:
 
p+q+r = 0
P3 + q3 + r3 = 18
p7 + q7 + r7 = 2058
IP Logged
Eigenray
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 1948
Re: Sum The Odd Powers, Get Real Triplets  
« Reply #1 on: Aug 5th, 2007, 3:34am »
Quote Quote Modify Modify

hidden:
Since p+q+r=0, we have
 
f(x) = (x-p)(x-q)(x-r) = x3 - ax - b,
 
where a = -(pq + qr + pr), and b = pqr.  Thus
 
xk = axk-2 + bxk-3
 
when x = p,q, or r, and so if sk = pk + qk + rk, then
 
sk = ask-2 + bk-3.
 
Also note that s2 = s12 + 2a = 2a.  Now,
 
18 = s3 = as1 + b0 = 3b
 
implies b=6, and then
 
2058 = s7 = as5 + 6s4
 = a(as3 + 6s2) + 6(as2 + 6s1)
 = a(18a + 12a) + 6(2a2) = 42a2,
 
or a = 7.  So {p,q,r} satisfy the cubic x3 7x - 6 = 0.  If a=-7, the discriminant is 4(7)3 + 27(-6)2 > 0, so the roots are not all real.  If a=7, we get x3 - 7x - 6 = (x+1)(x+2)(x-3), so {p,q,r} = {-1,-2,3}.
« Last Edit: Aug 5th, 2007, 3:37am by Eigenray » IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board