Author |
Topic: prove (Read 1069 times) |
|
tony123
Junior Member
Posts: 61
|
prove tan 70 = tan 20 + 2 tan 40 +4 tan 10
|
|
IP Logged |
|
|
|
FiBsTeR
Senior Riddler
Gender:
Posts: 581
|
Done.
|
|
IP Logged |
|
|
|
SMQ
wu::riddles Moderator Uberpuzzler
Gender:
Posts: 2084
|
|
Re: prove
« Reply #2 on: Jun 28th, 2007, 4:19am » |
Quote Modify
|
There may be an easier way, but tan(20) + 2 tan(40) + 4 tan(10) = tan(2(70 - 60)) + 2 tan(70 - 30) + 4 tan(70 - 60), which can be manipulated using the identities tan(a - b) = (tan(a) - tab(b))/(1 + tan(a)tan(b)) and tan(2a) = 2 tan(a)/(1 - tan2(a)) to be entirely in terms of tan(70), tan(60) = sqrt(3), and tan(30) = sqrt(3)/3, then reduced to the desired result. --SMQ
|
|
IP Logged |
--SMQ
|
|
|
K Sengupta
Senior Riddler
Gender:
Posts: 371
|
|
Re: prove
« Reply #3 on: Jun 28th, 2007, 8:52pm » |
Quote Modify
|
The problem can also be alternatively solved in the following manner: Let tan 70 = p(say) Then, cot 20 = p, so that: tan 20 = 1/p Thus, tan 40 = 2*(1/p)/(1- (1/p)^2 ) = 2p/(p^2 - 1) And, tan 80 = 2*(2p)*(p^2-1)/((p^2-1)^2 – (2p)^2) = 2*(2p)*(p^2-1)/ (p^4 - 6*p^2 + 1) = cot 10 Or, tan 10 = (p^4 -6*p^2 + 1)/(4p(p^2-1)) Thus, tan 20 + 2*tan 40 + 4*tan 10 = (4*p^2 + p^2 - 1 + p^4 - 6*p^2 +1)/(p(p^2-1) = (p^4 – p^2)/(p(p^2-1)) = p = tan 70 Q E D
|
« Last Edit: Jun 28th, 2007, 9:01pm by K Sengupta » |
IP Logged |
|
|
|
K Sengupta
Senior Riddler
Gender:
Posts: 371
|
|
Re: prove
« Reply #4 on: Jun 29th, 2007, 7:32am » |
Quote Modify
|
Another alternative methodology would turn on referring to the trigonometric identity: tan x – cot x = -2 cot 2x From the above identity, we obtain: tan 20 – cot 20 = - 2cot 40…..(i) 2(tan 40 – cot 40) = - 4cot 80…..(ii) Also, 4 tan 10 = 4 cot 80 ……(iii) Adding, (i), (ii), (iii); and simplifying, we have: tan 20 + 2 tan 40 + 4 tan 10 = cot 20 Or, tan 20 + 2 tan 40 + 4 tan 10 = tan 70
|
« Last Edit: Jun 29th, 2007, 7:32am by K Sengupta » |
IP Logged |
|
|
|
|