wu :: forums
« wu :: forums - prove »

Welcome, Guest. Please Login or Register.
Nov 29th, 2024, 1:00am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   medium
(Moderators: ThudnBlunder, william wu, towr, Icarus, Grimbal, Eigenray, SMQ)
   prove
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: prove  (Read 1069 times)
tony123
Junior Member
**





   


Posts: 61
prove  
« on: Jun 27th, 2007, 7:34am »
Quote Quote Modify Modify

prove  
 
 
 
 
tan 70 = tan 20  + 2 tan 40 +4 tan 10
IP Logged
FiBsTeR
Senior Riddler
****





   
WWW

Gender: male
Posts: 581
Re: prove   Tangent_Proof_2.bmp
« Reply #1 on: Jun 27th, 2007, 2:29pm »
Quote Quote Modify Modify

Done.  Roll Eyes
IP Logged

SMQ
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 2084
Re: prove  
« Reply #2 on: Jun 28th, 2007, 4:19am »
Quote Quote Modify Modify

There may be an easier way, but tan(20) + 2 tan(40) + 4 tan(10) = tan(2(70 - 60)) + 2 tan(70 - 30) + 4 tan(70 - 60), which can be manipulated using the identities tan(a - b) = (tan(a) - tab(b))/(1 + tan(a)tan(b)) and tan(2a) = 2 tan(a)/(1 - tan2(a)) to be entirely in terms of tan(70), tan(60) = sqrt(3), and tan(30) = sqrt(3)/3, then reduced to the desired result.
 
--SMQ
IP Logged

--SMQ

K Sengupta
Senior Riddler
****





   


Gender: male
Posts: 371
Re: prove  
« Reply #3 on: Jun 28th, 2007, 8:52pm »
Quote Quote Modify Modify

The problem can also be alternatively solved in the following manner:
 
Let tan 70 = p(say)
Then, cot 20 = p, so that:
 
tan 20 = 1/p
 
Thus, tan 40  
= 2*(1/p)/(1- (1/p)^2 )
= 2p/(p^2 - 1)
 
And, tan 80  
= 2*(2p)*(p^2-1)/((p^2-1)^2 – (2p)^2)
= 2*(2p)*(p^2-1)/ (p^4 - 6*p^2 + 1)
= cot 10
 
Or, tan 10  
= (p^4 -6*p^2 + 1)/(4p(p^2-1))
 
Thus,  
tan 20 + 2*tan 40 + 4*tan 10
= (4*p^2 + p^2 - 1 + p^4 - 6*p^2 +1)/(p(p^2-1)
= (p^4 – p^2)/(p(p^2-1))
= p
= tan 70
 
             Q            E          D
 
« Last Edit: Jun 28th, 2007, 9:01pm by K Sengupta » IP Logged
K Sengupta
Senior Riddler
****





   


Gender: male
Posts: 371
Re: prove  
« Reply #4 on: Jun 29th, 2007, 7:32am »
Quote Quote Modify Modify

Another alternative methodology would turn on referring to the trigonometric identity:
 
tan x – cot x = -2 cot 2x
 
From the above identity, we obtain:
 
tan 20 – cot 20 = - 2cot 40…..(i)
2(tan 40 – cot 40) = - 4cot 80…..(ii)
 
Also, 4 tan 10 = 4 cot 80 ……(iii)
 
Adding, (i), (ii), (iii); and simplifying, we have:
tan 20 + 2 tan 40 + 4 tan 10 = cot 20
Or, tan 20 + 2 tan 40 + 4 tan 10 = tan 70

 
« Last Edit: Jun 29th, 2007, 7:32am by K Sengupta » IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board