Author |
Topic: Number with prime factors 3 & 7, ending in 11 (Read 710 times) |
|
gkwal
Newbie
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif)
Posts: 25
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Number with prime factors 3 & 7, ending in 11
« on: May 3rd, 2007, 11:35am » |
Quote Modify
|
Show that no positive integer exists whose prime factors are at most 3 and 7, and which ends in the digits 11.
|
|
IP Logged |
|
|
|
Grimbal
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://florian.net/pic/65x65/grimbal.php?.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 7527
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: Number with prime factors 3 & 7, ending in
« Reply #1 on: May 3rd, 2007, 1:42pm » |
Quote Modify
|
What we are looking is a N = 2a·3b·5c·7d That ends in 11. To end in 1, a and c must be zero. => N = 3b·7d Let's consider it modulo 20. We want to find such an N that equals 11 (mod 20). 33 = 27 = 7 (mod 20) so 7d = 33d => N = 3b+3d (mod 20) But the powers of 3 (mod 20) are 1, 3 ,9, 7, 1, ... so there is no way to get 11.
|
|
IP Logged |
|
|
|
|