Author |
Topic: A Digital Puzzle (Read 1343 times) |
|
Eigenray
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://manetheren.bigw.org/~ray/eigenray.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 1948
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: A Digital Puzzle
« Reply #1 on: Mar 8th, 2007, 4:37pm » |
Quote Modify
|
(i) Since phi(34)=34*(1-1/3) = 54, 254 = 1 mod 34, and since 2007 = 9 mod 54, 22007 = 29 = 512 = 26 mod 34. In particular, 22007 = 8 mod 9. Similarly, phi(52) = 20, so 22007 = 27 = 128 = 3 mod 52. So 22007 is 8 mod 9 and 3 mod 25. Using the Chinese remainder theorem, or by inspection, 22007 = 53 mod 225, and so S = [(22007+35)/225] = (22007 - 53)/225. Now, 22007 - 53 = 26 - 53 = -27 mod 34, so S = -27/225 = -3/25 = 3/2 = 6 mod 32, and the digital root is 6. (ii) This one I'm not sure how to do by hand, but it suffices to compute log10 S ~ log10 (22007/225) = 2007log10 2 - log10 225 = 601.815, so S ~ 10601.815 ~ 6.5 * 10601, so the product of the digits of S is 6*5*..., hence ends in 0, so the multiplicative digital root of S is 0.
|
|
IP Logged |
|
|
|
|