Author |
Topic: f(2007) (Read 419 times) |
|
perash
Newbie
Posts: 4
|
if f(1)=2007 n is integers f(1)+f(2)+.......+f(n)=(n^2).f(n) and n>= 1 find f(2007)
|
|
IP Logged |
|
|
|
balakrishnan
Junior Member
Gender:
Posts: 92
|
|
Re: f(2007)
« Reply #2 on: Jan 6th, 2007, 10:31am » |
Quote Modify
|
f(1)+f(2)+..f(n)=n^2 f(n) f(1)+..f(n-1)=(n-1)^2 f(n-1) subtracting the 2,we get f(n)=n^2 f(n)-(n-1)^2 f(n-1) which gives (n^2-1) f(n) =(n-1)^2 f(n-1) or (n+1) f(n)=(n-1) f(n-1) or f(n)=(n-1)/(n+1) f(n-1) which means f(n)=(n-1)/(n+1)*(n-2)/(n)*(n-3)/(n-1)*...(1/3)*f(1) or f(n)=[(n-1)!]/[(n+1)!] *2 * f(1)=2*f(1)/[n(n+1)] which gives f(2007)=2/2008=1/1004
|
|
IP Logged |
|
|
|
|