wu :: forums
« wu :: forums - Triangle inequality »

Welcome, Guest. Please Login or Register.
Dec 27th, 2024, 6:26am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   medium
(Moderators: ThudnBlunder, towr, Grimbal, SMQ, william wu, Eigenray, Icarus)
   Triangle inequality
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Triangle inequality  (Read 748 times)
NickH
Senior Riddler
****





   
WWW

Gender: male
Posts: 341
Triangle inequality  
« on: Apr 23rd, 2003, 11:41am »
Quote Quote Modify Modify

The sides of a triangle have lengths a, b, c.  Show that:
 
3/2 <= a/(b + c) + b/(c + a) + c/(a + b) < 2.
IP Logged

Nick's Mathematical Puzzles
Mond
Guest

Email

Re: Triangle inequality  
« Reply #1 on: Apr 23rd, 2003, 9:45pm »
Quote Quote Modify Modify Remove Remove


This should work... the greater than applies to any 3 positive reals, but the lesser than inequality requires that they're sides of a triangle.
 
 
 the greater than case :  
     a/(b+c) = (a+b+c)/(b+c) - 1 ....  
   
   this gives
 
  (a+b+c) (1/(b+c) + 1/(c+a) + 1/(a+b)) - 3
     
   =0.5((a+b)+(b+c)+(c+a)) (1/(b+c) + 1/(c+a) + 1/(a+b)) -3
   
   since AM >= HM , (x+y+z)(1/x+1/y+1/z) >= 9
   
   so the above is   >= 9/2 - 3  (= 3/2)
   
    the equality is when the triangle is equilateral
 
 the lesser than :  
     
 since in a triangle,  a+b > (a+b+c)/2  (because a+b>c)
   
      a/(b+c) < a/s , where s = (a+b+c)/2
   
    so the sum  < (a+b+c)/s  (=2)  

       
       
     
IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board