Author |
Topic: Trig identity involving pi/11 (Read 12923 times) |
|
perash
Newbie
Posts: 4
|
|
Trig identity involving pi/11
« on: Jan 1st, 2007, 1:26pm » |
Quote Modify
|
prove that tan(3pi\11)+4sin(2pi\11)=sqrt 11
|
« Last Edit: Mar 7th, 2007, 12:29am by towr » |
IP Logged |
|
|
|
Michael Dagg
Senior Riddler
Gender:
Posts: 500
|
|
Re: prove
« Reply #2 on: Jan 1st, 2007, 2:54pm » |
Quote Modify
|
\ means / here. This is well-known. Not too hard either. If you're not careful you'll quickly get a messy expression.
|
« Last Edit: Jan 1st, 2007, 2:58pm by Michael Dagg » |
IP Logged |
Regards, Michael Dagg
|
|
|
JP05
Guest
|
I working on this problem for a while today and came up with nothing in the way of showing the left side = the right side other than doing it numerically. Symbolically, Maple does not seem to be able to do much with the left side except make a humongous formula. It is a little smaller when you convert the trig to exp. But when I subtract the right side from the left side Maple does say it is = to 0 but only after I specify the digits of precision to be 300 or more. I know in come cases Maple does not know how to exactly deal with trig formulas if they do not fit into a certain identity scheme but most of the time I have alway seen it do very good with exp forms.
|
|
IP Logged |
|
|
|
Michael Dagg
Senior Riddler
Gender:
Posts: 500
|
|
Re: prove
« Reply #4 on: Jan 2nd, 2007, 4:30pm » |
Quote Modify
|
Experimenting with this problem using Maple can be a fun thing and if done right it will reveal some interesting relationships and may give you a clue as how to do it analytically. But you have to help it some in order to do this. You are right that the complex exponential form is more compact than the trig form. What you need to do is define F = tan(3*x)+4*sin(2*x) where x = 2pi/22. When you use the expand() command it will convert this to a rational function in sin(x) and cos(x), and then Maples's convert(...,exp) command will rewrite it as a rational function in exp(x*I). You may then substitute the exp(x*I) factors with y, i.e. with subs(exp(x*I)=y,%). Now, y is an element of a cyclotomic field, that is, all the computations are really taking place in Q[y] = Q[X]/phi(X) where phi is the minimal polynomial of y, a primitive 22nd root of unity. Thus phi is the 22nd cyclotomic polynomial, which you can get in Maple by loading the number theory package with the command numtheory[cyclotomic](22,X) . This will get you that polynomial. So you can get your expression in the simplest possible way with simplify(%, {phi}) . Unfortunately Maple is kind of stupid about this: it tries to simplify numerator and denominator, but fails to see that the whole rational expression can be written as a polynomial in y. You can help it out by using, say, the Euclidean algorithm to find polynomials u(y) and v(y) so that u(y) phi(y) + v(y) d(y) = 1, where d(y) is the denominator of the rational function; since phi vanishes at y, this means 1/d(y) = v(y), a polynomial; then you can use the simplify() command as above. So with Maple you get you as far as expressing the left side as a polynomial in y = exp(2 pi i / 22). It's a little bit of number theory to know that within the cyclotomic field Q[y] you can also find the real-quadratic field Q[sqrt(11)]. To know that your polynomial is exactly sqrt(11) is not the way to proceed; instead check that it is equal to + or - sqrt(11) by showing that its square equals 11. That, in turn, can be done with less simplification than the previous paragraph suggested. This should work: F:=tan(3*x) + 4*sin(2*x); convert(expand(F),exp); subs(exp(x*I)=y,%); numer(factor(%^2-11)); %/numtheory[cyclotomic](22,y); The fact that the final answer has no denominator means the previous one is a multiple of phi, and so vanishes when y is a primitive 22nd root of unity. THerefore for this value of x, F^2 = 11, i.e. F is either sqrt(11) or its negative. But hey, to a number theorist, sqrt(11) just means a number whose square is 11, without prejudicing one of these numbers of its Galois conjugates!
|
« Last Edit: Jan 2nd, 2007, 4:34pm by Michael Dagg » |
IP Logged |
Regards, Michael Dagg
|
|
|
ThudnBlunder
wu::riddles Moderator Uberpuzzler
The dewdrop slides into the shining Sea
Gender:
Posts: 4489
|
|
Re: prove
« Reply #5 on: Jan 2nd, 2007, 4:41pm » |
Quote Modify
|
on Jan 2nd, 2007, 4:03pm, JP05 wrote:I working on this problem for a while today and came up with nothing in the way of showing the left side = the right side other than doing it numerically. |
| Mathworld has a few things to say about pi/11 http://mathworld.wolfram.com/TrigonometryAnglesPi11.html There is a typo in Equation 9, the 6th typo I have spotted and submitted to Eric.
|
« Last Edit: Jan 2nd, 2007, 4:57pm by ThudnBlunder » |
IP Logged |
THE MEEK SHALL INHERIT THE EARTH.....................................................................er, if that's all right with the rest of you.
|
|
|
Icarus
wu::riddles Moderator Uberpuzzler
Boldly going where even angels fear to tread.
Gender:
Posts: 4863
|
|
Re: prove
« Reply #6 on: Jan 2nd, 2007, 5:05pm » |
Quote Modify
|
Would that be the use of "cot" instead of "tan"? I notice that there are two cotangent formulas, but none for tangent.
|
|
IP Logged |
"Pi goes on and on and on ... And e is just as cursed. I wonder: Which is larger When their digits are reversed? " - Anonymous
|
|
|
JP05
Guest
|
on Jan 2nd, 2007, 5:05pm, Icarus wrote:Would that be the use of "cot" instead of "tan"? I notice that there are two cotangent formulas, but none for tangent. |
| Based on the polynomial that the code above outputs that seems to be the case but what I don't understand is what do the subscripts mean on the (...)? First I thought it was the order of the polynomials but that can't be it unless 7, 8 and 9 are errors.
|
|
IP Logged |
|
|
|
ThudnBlunder
wu::riddles Moderator Uberpuzzler
The dewdrop slides into the shining Sea
Gender:
Posts: 4489
|
|
Re: prove
« Reply #8 on: Jan 2nd, 2007, 6:27pm » |
Quote Modify
|
on Jan 2nd, 2007, 5:05pm, Icarus wrote:Would that be the use of "cot" instead of "tan"? I notice that there are two cotangent formulas, but none for tangent. |
| Well, they seem to be in alphabetical order, as are corresponding formulae on other pages. on Jan 2nd, 2007, 5:43pm, JP05 wrote:...but what I don't understand is what do the subscripts mean on the (...)? First I thought it was the order of the polynomials but that can't be it unless 7, 8 and 9 are errors. |
| From http://mathworld.wolfram.com/TrigonometryAnglesPi7.html "Letting (P(x))n denote the nth root of the polynomial P(x) using the ordering of Mathematica's Root function..."
|
« Last Edit: Jan 2nd, 2007, 6:33pm by ThudnBlunder » |
IP Logged |
THE MEEK SHALL INHERIT THE EARTH.....................................................................er, if that's all right with the rest of you.
|
|
|
Barukh
Uberpuzzler
Gender:
Posts: 2276
|
|
Re: prove
« Reply #9 on: Jan 3rd, 2007, 5:53am » |
Quote Modify
|
on Jan 2nd, 2007, 4:30pm, Michael_Dagg wrote:Experimenting with this problem using Maple can be a fun thing and if done right it will reveal some interesting relationships and may give you a clue as how to do it analytically. But you have to help it some in order to do this. |
| Is this the simplest way to solve this innocently looking identity?
|
|
IP Logged |
|
|
|
Michael Dagg
Senior Riddler
Gender:
Posts: 500
|
|
Re: prove
« Reply #10 on: Jan 4th, 2007, 8:20pm » |
Quote Modify
|
I think so. At least this is the way I approach these kind of things when something ends up a mixed-trig relation with these kinds of angles. You could try to use some of the same kind of mixed-trig identities given in that link T&B provided to produce the desired result but then you'd simply be using a variant of what you are trying to prove to begin with. Of course de Moivre theorem is key here. In this case it is figuring out what n-th root of unity you want, which is not hard, and by the time you compute one multiple of 11 you would have already reached for more paper.
|
« Last Edit: Jan 4th, 2007, 8:21pm by Michael Dagg » |
IP Logged |
Regards, Michael Dagg
|
|
|
JP05
Guest
|
Something that I thought would be informative to everyone who might have been interested in this problem is that before I was able to see what Michael Dagg has posted here I sent this problem to a mathematician at my university here. I won't say who and a I won't say where but he answered my email tonight and this is what he said I gave your problem several hours of serious cerebration,but came up empty.I've shown it to other colleagues as well. The appearance of the naked number square-root of 11 is "unnatural" in a trigonometric iden- tity (although,as you must have confirmed yourself,your proposed ident- ity is numerically supported by a TI-83). What was your source for the problem? I have a hunch that Archimedes' method for approximating the circum- ference of a circle via regular inscribed polygons might be relevant, as that required him to compute (by geometry!) the sines and cosines of pi/n for integers n,and your problem comes down to cos(pi/11) being a root of a certain eighth-degree polynomial. That said,there may never- theless be some insightful geometric approach with minimal computation-- "Tis a consummation devoutly to be wished for",as Shakespeare put it in Hamlet's famous soliloquy. Now the professor I asked is no newbie. I guess he is about 65 years old and does topology and is distinguished. I am guessing that his mention of cos(pi/11) being a root of a "certain 8-degree polynomial" is this exactly the same thing that Dagg said about cyclotomic polynomial of the full formula. I guess the point I am trying to make here is that how well known is the identity? Dagg said it is well known, apparently on Mathworld other people know about it, so how might a Ph.D. in topology not know this formula? Or should his canny Shakespeare quote just some way of tell me to "go fish"? So, how many of your other people did not know this formula? I sure never saw it before.
|
|
IP Logged |
|
|
|
balakrishnan
Junior Member
Gender:
Posts: 92
|
|
Re: prove
« Reply #12 on: Jan 8th, 2007, 7:40pm » |
Quote Modify
|
first let us compute Cos(0)+Cos(2pi/11)+Cos(4pi/11)+..Cos(10pi/11) It is real of Sum[exp(i*2*pi*k/11)]for k=0 to 5 which is real of [exp(12pii/11)-1]/[exp(2pi.i/11)-1] which is real of 1/[1+exp(pi.i/11)] which is real of (1+exp(-i.pi/11))/(2+2Cos(pi/11)) which is [1+cos(pi/11)]/[2(1+Cos(pi/11)]=1/2 Cos(0)+Cos(2pi/11)+Cos(4pi/11)+..Cos(10pi/11)=1/2 or Cos(2pi/11)+Cos(4pi/11)+..Cos(10pi/11)=-1/2 I call pi/11 as z So 2[Cos(4z)-Cos(8z)]=2[Cos(2z)+Cos(10z)]+1+2Cos(6z)+4Cos(4z) which gives 4Sin(6z)Sin(2z)=4Cos(4z) Cos(6z)+1+2Cos(6z)+4Cos(4z) or 3[1+Cos(6z)][1+Cos(4z)]=1+[1-Cos(4z)][1+Cos(6z)]+4Sin(6z).Sin(2z) or 12(Cos(3z))^2.(Cos(2z))^2=1+4[Sin(2z)]^2.[Cos(3z)]^2+8.Sin(3z).Sin(2z).Cos(3z) or 12.[Cos(3z)]^2=1+16[Sin(2z)]^2 [Cos(3z)]^2+8[Sin(3z)][Sin(2z)][Cos(3z)] or 11.[Cos(3z)]^2=[Sin(3z)]^2+16[Sin(2z)]^2 [Cos(3z)]^2+8[Sin(3z)][Sin(2z)][Cos(3z)] or 11.[Cos(3z)]^2=[Sin(3z)+4Sin(2z)Cos(3z)]^2 or [Tan(3z)+4.Sin(2z)]^2=11 or [Tan(3z)+4.Sin(2z)]=sqrt(11)..It is the positive sqroot because 3z<pi/2 and 2z<pi So tan() and Sin() are positive
|
|
IP Logged |
|
|
|
Icarus
wu::riddles Moderator Uberpuzzler
Boldly going where even angels fear to tread.
Gender:
Posts: 4863
|
|
Re: prove
« Reply #13 on: Jan 8th, 2007, 8:32pm » |
Quote Modify
|
Yeesh. Where did you find that, balakrishnan?
|
|
IP Logged |
"Pi goes on and on and on ... And e is just as cursed. I wonder: Which is larger When their digits are reversed? " - Anonymous
|
|
|
balakrishnan
Junior Member
Gender:
Posts: 92
|
|
Re: prove
« Reply #14 on: Jan 8th, 2007, 8:48pm » |
Quote Modify
|
on Jan 8th, 2007, 8:32pm, Icarus wrote:Yeesh. Where did you find that, balakrishnan? |
| In my head
|
|
IP Logged |
|
|
|
Michael Dagg
Senior Riddler
Gender:
Posts: 500
|
|
Re: prove
« Reply #15 on: Jan 8th, 2007, 9:01pm » |
Quote Modify
|
Kudos! That will do it. Those are the REFLECTIONS in this 22nd cyclotomic field! Hence, (tan(3*x)+4sin(2*x))^2=11.
|
« Last Edit: Jan 8th, 2007, 9:01pm by Michael Dagg » |
IP Logged |
Regards, Michael Dagg
|
|
|
Barukh
Uberpuzzler
Gender:
Posts: 2276
|
|
Re: prove
« Reply #16 on: Jan 9th, 2007, 3:41am » |
Quote Modify
|
That's much better, balakrishnan! And IMHO doesn't require any recourse to cyclotomic fields.
|
|
IP Logged |
|
|
|
pex
Uberpuzzler
Gender:
Posts: 880
|
Not being too much of a mathematical genius, I prefer a simple polynomial approach (thanks to Michael Dagg for pointing me in the right direction). I attach my solution, which I wrote a couple of days ago.
|
|
IP Logged |
|
|
|
JP05
Guest
|
Those are both neat solutions. I guess the thing here is about the learning experience this forum has given us. I suppose that if some one just banged out the trig solution in this forum then we would not have learned as much. At least not for me. So, last night I sent out another email to a professor at Harvard and this his answer below. I am still finding this surprising but he dos give a solution. " I looked at the problem of verifying that identity and soon realized that it becomes quite horrendous if you express everything in terms of cos(pi/11) and sin(pi/11) and then square both sides. Since only even powers of these sines and cosines appear, you can use the Pythagorean Identity over and over again to finally come up with a polynomial of degree 10 in cos(pi/11) with large, complicated coefficients. Verifying this identity would be a complicated matter but, in principle, it could be done. A much easier way is to introduce the following complex number: z = cos(pi/11) + i sin(pi/11), which is a "primitive 22nd root of unity". Then sin(3pi/11) = (z^3 - z^(-3))/2i , cos(3pi/11) = (z^3 + z^(-3))/2, and sin(2pi/11) = (z^2-z^(-2))/2i. If you make these substitutions, clear the denominator by multiplying both sides by (z^3 + z^(-3)), then square both sides and simplify (this takes a bit of patience and perseverance), you will get: 4(z^10 + z^(-10)) + 4(z^8 + z^( -8 )) + 4(z^6 + z^(-6)) + 4(z^4 + z^(-4)) + 4(z^2 + z^(-2)) + 4 = 0, which is valid because w = z^2 is a "primitive 11th root of unity", and any primitive 11th root of unity w satisfies: w^5 + w^(-5) + w^4 + w^(-4) + w^3 + w^(-3) + w^2 + w^(-2) + w + w^(-1) + 1 = 0 As you can see, the polar form of complex numbers and DeMoivre's Theorem are crucial in this verification. "
|
|
IP Logged |
|
|
|
ThudnBlunder
wu::riddles Moderator Uberpuzzler
The dewdrop slides into the shining Sea
Gender:
Posts: 4489
|
|
Re: prove
« Reply #19 on: Jan 9th, 2007, 4:02pm » |
Quote Modify
|
From Mathworld "Trigonometric functions of pi/p for p prime have an especially complicated Galois-minimal representation. In particular, the case cos(pi/23) requires approximately 500 MB of space using the Mathematica command FunctionExpand[Cos[Pi/23]]."
|
« Last Edit: Jan 9th, 2007, 4:02pm by ThudnBlunder » |
IP Logged |
THE MEEK SHALL INHERIT THE EARTH.....................................................................er, if that's all right with the rest of you.
|
|
|
Icarus
wu::riddles Moderator Uberpuzzler
Boldly going where even angels fear to tread.
Gender:
Posts: 4863
|
|
Re: prove
« Reply #20 on: Jan 9th, 2007, 4:37pm » |
Quote Modify
|
on Jan 8th, 2007, 8:48pm, balakrishnan wrote: In my head |
| Good! That means you can answer my question: How did you figure it out? Obviously, you didn't start with the idea "lets add together the cosine of the even multiples, and see if it can't be shown out of that". There are many choices you've made in the direction of the calculation that seem unmotivated at the time. Of course, you must have started at the desired formula and worked the other way, but even then I'm curious at the reasons you did some things which at that point in the calculation seem arbitrary - though in the end they give the desired result.
|
|
IP Logged |
"Pi goes on and on and on ... And e is just as cursed. I wonder: Which is larger When their digits are reversed? " - Anonymous
|
|
|
JP05
Guest
|
THUDandBLUNDER this is very interesting. That is a large big gob of memory. I guess this might have to do with what your link said about a complicated Galois something. Anyone know how to explain this Galois? It turns out that this problem boils down to knowing that cos(pi/11) is the root of 8th degree polynomial. But it is not obvious because you miss it since the polynomials that are discussed have degrees that are higher. I do notice that there is a mix of [] and () in the trig solution. Mathematica requires [] and Maple (). So, I am wondering if there was a little help from Mathematica producing that trig solution. If so I would be intersted to know how you did it. I am also guessing that a reflection must mean something like since sin(5pi/11) = sin(6pi/11) or something like this because this happens across the y axis of the circle at those two values and maybe more subtle ones that are not that obvious.
|
« Last Edit: Jan 9th, 2007, 4:48pm by JP05 » |
IP Logged |
|
|
|
balakrishnan
Junior Member
Gender:
Posts: 92
|
|
Re: prove
« Reply #22 on: Jan 9th, 2007, 5:49pm » |
Quote Modify
|
I backtracked. You can see that the steps backwards are more obvious than the forward steps I continuosly aimed at reducing the squares. Then it is a matter of identifying what Cos(0)+Cos(2pi/11)+Cos(4pi/11)+..Cos(10pi/11) is which is -1/2..So this becomes your first step
|
« Last Edit: Jan 9th, 2007, 5:49pm by balakrishnan » |
IP Logged |
|
|
|
Icarus
wu::riddles Moderator Uberpuzzler
Boldly going where even angels fear to tread.
Gender:
Posts: 4863
|
|
Re: prove
« Reply #23 on: Jan 9th, 2007, 6:11pm » |
Quote Modify
|
Please let me state that I am not accusing balakrishnan of plagiarism. I am merely curious what motivated him to take certain steps. My first suspicion was that he was reproducing something he found elsewhere. I have no problem with that - a significant number of posts in the hard forum fall into that category. I have made a number myself that have more to do with memory than original thinking. But I have no reason for, or any intention of doubting his statement otherwise. Both of my earlier posts are simply because I am curious about how this solution was arrived at. Since happily it is balakrishnan's own, he can answer my questions! My questions do not in any way cast doubt on the authorship, as the solution obviously was derived by somebody. But the thing I was curious about was what guided you to get the Cos(0)+Cos(2pi/11)+Cos(4pi/11)+...+Cos(10pi/11) form. You are in there adding and subtracting terms with no apparent immediate reason, and suddenly out of this horrendous grabbag of trig expressions pops this nice neat progression. When I look at it, I see other routes you could go at the time that seem as likely as the way you did - but those just lead to nastier and nastier formulas. Actually, JP05's quoted work lends some explanation of why this is the way to go. Note that in both it and in pex's solution, this same cosine progression is present (though in disguise). [ edit ] I see that the post that suggested balakrishnan might have plagiarized has been wisely removed since I started this reply. [ /edit ]
|
« Last Edit: Jan 9th, 2007, 6:14pm by Icarus » |
IP Logged |
"Pi goes on and on and on ... And e is just as cursed. I wonder: Which is larger When their digits are reversed? " - Anonymous
|
|
|
Michael Dagg
Senior Riddler
Gender:
Posts: 500
|
|
Re: prove
« Reply #24 on: Jan 14th, 2007, 8:46pm » |
Quote Modify
|
GOODNESS! A few days gone and I miss a lot! KUDOS - Pex your solution is most desirable. Nice work (I bet that it got a few Huhs?, WHEW)!!! So, there you have it -- cyclotomic polynomials in a trig problem, image that. It turns out that this not anything new but the trig solution is new, at least to me, as I have not seen it before now, but just because I haven't seen it means "just that." However, it's both logical and clever: logical because it removes the nasty trig and clever because it pulls in a geometric series that is not obvious! JP05 resources are interesting -- don't try that with a homework problem! I used the term "reflections" a little losely in this number field but, yes, JP05 your equality is correct, in this same way. In fact, if you are up to making some discoveries in these kinds of number fields you might also find tan(4 pi/11) + 4 sin(pi/11) = sqrt(11) for these same reasons.
|
« Last Edit: Jan 14th, 2007, 8:49pm by Michael Dagg » |
IP Logged |
Regards, Michael Dagg
|
|
|
|