wu :: forums
« wu :: forums - EVALUATE THIS INFINITE SUM »

Welcome, Guest. Please Login or Register.
Dec 22nd, 2024, 10:50pm

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   hard
(Moderators: Icarus, ThudnBlunder, Grimbal, SMQ, Eigenray, william wu, towr)
   EVALUATE THIS INFINITE SUM
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: EVALUATE THIS INFINITE SUM  (Read 540 times)
pcbouhid
Uberpuzzler
*****





   
Email

Gender: male
Posts: 647
EVALUATE THIS INFINITE SUM  
« on: Nov 20th, 2005, 4:55am »
Quote Quote Modify Modify

Evaluate this infinite sum:
 
k=inf                 1          
SUM     -------------------
k=0      (3k+1)(3k+2)(3k+3)    
 
No computers allowed!      
« Last Edit: Nov 20th, 2005, 4:58am by pcbouhid » IP Logged

Don´t follow me, I´m lost too.
Eigenray
wu::riddles Moderator
Uberpuzzler
*****






   


Gender: male
Posts: 1948
Re: EVALUATE THIS INFINITE SUM  
« Reply #1 on: Nov 20th, 2005, 6:03am »
Quote Quote Modify Modify

Fun.
First rewrite it as
2S = [sum] 1/(3k+1) - 2/(3k+2) + 1/(3k+3)
Now let
L(x) = x + x2/2 + x3/3 + ... = -log(1-x).
Ignoring convergence,
2(w-w')S = L(w) - L(w') - w'L(w) + wL(w')
= (L(w)+L(w'))*(w-w')/2 + (L(w)-L(w'))*3/2,
where w = e2 pi i/3, w'=w2 are cube roots of 1.  Evaluating
L(w)+L(w') = -log[(1-w)(1-w')] = -log|1-w|2 = -log 3,
L(w)-L(w') = log[(1-w')/(1-w)] = log (-w') = i pi/3,
it follows
2i sqrt(3) S = -(log 3) i sqrt(3)/2 + i pi/2,
so S = [ pi/sqrt(3) - log 3 ]/4
IP Logged
Barukh
Uberpuzzler
*****






   


Gender: male
Posts: 2276
Re: EVALUATE THIS INFINITE SUM  
« Reply #2 on: Nov 20th, 2005, 10:11am »
Quote Quote Modify Modify

on Nov 20th, 2005, 6:03am, Eigenray wrote:
Fun.

Fun2 !  Cheesy
 
Is it possible in a similar manner to evaluate infinite sums of n-degree polynomials?
IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board