Author |
Topic: 36 BALLS, one different (Read 1145 times) |
|
pcbouhid
Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/walkingdancer.gif)
![Email Email](http://www.ocf.berkeley.edu/~wwu/YaBBImages/email.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 647
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
36 BALLS, one different
« on: Nov 18th, 2005, 5:35am » |
Quote Modify
|
I think that everyone knows the problem of the "12 balls", one different (lighter or heavier than the others), 3 weighings. What about 36 balls, one different (lighter or heavier), 4 weighings?
|
|
IP Logged |
Don´t follow me, I´m lost too.
|
|
|
Grimbal
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://florian.net/pic/65x65/grimbal.php?.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 7527
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: 36 BALLS, one different
« Reply #1 on: Nov 18th, 2005, 7:36am » |
Quote Modify
|
I think you can even go up to 39.
|
|
IP Logged |
|
|
|
Joe Fendel
Junior Member
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/blank.gif)
Posts: 68
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: 36 BALLS, one different
« Reply #2 on: Nov 18th, 2005, 7:44am » |
Quote Modify
|
Use 1 weighing to reduce to the 12-ball problem. Weigh balls 1-12 against 13-24. If one side or the other is heavier, this can now be reduced to the 12-ball problem by considering the 12 pairs: 1-13, 2-14, ... 12-24. One of these pairs of balls is heavier or lighter. Use three weighings to figure out which pair and whether it's light or heavy - that will be sufficient information to determine which ball in the pair is off-weight and in which direction. (For example, if 1-12 is heavier than 13-24 in weighing 1, and you learn in the subsequent 3 weighings that the 1-13 pair is heavy, then you know that in fact ball 1 is heavy.) If the first weighing is balanced, then we're reduced to the 12-ball problem on balls 25-36.
|
|
IP Logged |
|
|
|
Grimbal
wu::riddles Moderator Uberpuzzler
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/starmod.gif)
![](http://florian.net/pic/65x65/grimbal.php?.gif)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 7527
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: 36 BALLS, one different
« Reply #3 on: Nov 18th, 2005, 7:57am » |
Quote Modify
|
For 36 balls, it is actually easier. Make 12 groups of 3, use the usual algorthm to find the ligher/heavier group and use the extra weighing to find which one of the 3 balls in the identified group is the different one.
|
|
IP Logged |
|
|
|
Neelesh
Junior Member
![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif) ![*](http://www.ocf.berkeley.edu/~wwu/YaBBImages/star.gif)
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/avatars/supernova.jpg)
Gender: ![male](http://www.ocf.berkeley.edu/~wwu/YaBBImages/male.gif)
Posts: 147
|
![](http://www.ocf.berkeley.edu/~wwu/YaBBImages/xx.gif) |
Re: 36 BALLS, one different
« Reply #4 on: Nov 18th, 2005, 8:13am » |
Quote Modify
|
on Nov 18th, 2005, 7:36am, Grimbal wrote:I think you can even go up to 39. |
| Yes, true. (3w-3)/2 is the maximum number of balls that can be weighed with w weighings
|
|
IP Logged |
|
|
|
|