wu :: forums
« wu :: forums - Limit of Product of Functions »

Welcome, Guest. Please Login or Register.
Dec 2nd, 2024, 6:51am

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   easy
(Moderators: SMQ, ThudnBlunder, Eigenray, william wu, Icarus, towr, Grimbal)
   Limit of Product of Functions
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Limit of Product of Functions  (Read 258 times)
william wu
wu::riddles Administrator
*****





   
WWW

Gender: male
Posts: 1291
Limit of Product of Functions  
« on: Mar 10th, 2004, 10:29am »
Quote Quote Modify Modify

Suppose lim x[to]c f(x) = a, and lim x[to]c g(x) = b.
 
Is it necessarily true that lim x[to]c f(x)g(x) = ab ?
 
Offer a counterexample if false, or prove it if true.
« Last Edit: Mar 10th, 2004, 10:29am by william wu » IP Logged


[ wu ] : http://wuriddles.com / http://forums.wuriddles.com
kellys
Junior Member
**





   


Gender: male
Posts: 78
Re: Limit of Product of Functions  
« Reply #1 on: Mar 10th, 2004, 12:15pm »
Quote Quote Modify Modify

[e]Assuming a,b,c are not infinity,[/e]

Use fact that,
|fg(x)-ab| = |fg(x)-ag(x)-bf(x)+ab  + ag(x)-ab  +  bf(x)-ab|
and,
|fg(x)-ag(x)-bf(x)+ab|=|f(x)-a| |g(x)-b|
Use triangle ineq, work it all out and you'll get that: For any [epsilon], when |x-c|<[delta] for suitable [delta],
|fg(x)-ab|< [epsilon]2 + |a|[epsilon] + |b|[epsilon]
After a little more work, the conclusion does hold.
« Last Edit: Mar 10th, 2004, 12:21pm by kellys » IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board