Author |
Topic: Triangle trig. inequalities (Read 383 times) |
|
NickH
Senior Riddler
Gender:
Posts: 341
|
|
Triangle trig. inequalities
« on: Nov 15th, 2003, 4:21am » |
Quote Modify
|
A triangle has angles A, B, and C, none of which exceeds a right angle. Show that sin A + sin B + sin C > 2 cos A + cos B + cos C > 1 tan (A/2) + tan (B/2) + tan (C/2) < 2
|
|
IP Logged |
Nick's Mathematical Puzzles
|
|
|
Sir Col
Uberpuzzler
impudens simia et macrologus profundus fabulae
Gender:
Posts: 1825
|
|
Re: Triangle trig. inequalities
« Reply #1 on: Nov 17th, 2003, 12:07pm » |
Quote Modify
|
:: If A+B < pi/2, then C > pi/2, which does not satisfy the requirement that each angle does not exceed a right angle. So A+B >= pi/2, and to minimise these values, and consequently minimise their sines, let A+B = pi/2, C = pi/2, and sinC = 1. Therefore the minimum value of sinA+sinB+sinC = sinA+sinB+1. But A = pi/2–B, so sinA = sin(pi/2–B) = cosB. So sin2A = cos2B = 1–sin2B, and we get sin2A+sin2B = 1. If 0 < Q < pi/2, 0 < sinQ < 1, and it follows for all Q, sinQ > sin2Q. As sin2A+sin2B = 1, it follows that sinA+sinB > 1. Hence sinA+sinB+sinC > 2. ::
|
|
IP Logged |
mathschallenge.net / projecteuler.net
|
|
|
|