wu :: forums
« wu :: forums - Triangle trig. inequalities »

Welcome, Guest. Please Login or Register.
Nov 28th, 2024, 4:47pm

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   easy
(Moderators: ThudnBlunder, Icarus, Grimbal, towr, william wu, Eigenray, SMQ)
   Triangle trig. inequalities
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: Triangle trig. inequalities  (Read 383 times)
NickH
Senior Riddler
****





   
WWW

Gender: male
Posts: 341
Triangle trig. inequalities  
« on: Nov 15th, 2003, 4:21am »
Quote Quote Modify Modify

A triangle has angles A, B, and C, none of which exceeds a right angle.  Show that
 
sin A + sin B + sin C > 2
 
cos A + cos B + cos C > 1
 
tan (A/2) + tan (B/2) + tan (C/2) < 2
IP Logged

Nick's Mathematical Puzzles
Sir Col
Uberpuzzler
*****




impudens simia et macrologus profundus fabulae

   
WWW

Gender: male
Posts: 1825
Re: Triangle trig. inequalities  
« Reply #1 on: Nov 17th, 2003, 12:07pm »
Quote Quote Modify Modify

::
If A+B < pi/2, then C > pi/2, which does not satisfy the requirement that each angle does not exceed a right angle.
 
So A+B >= pi/2, and to minimise these values, and consequently minimise their sines, let A+B = pi/2, C = pi/2, and sinC = 1.
 
Therefore the minimum value of sinA+sinB+sinC = sinA+sinB+1.
 
But A = pi/2–B, so sinA = sin(pi/2–B) = cosB.
 
So sin2A = cos2B = 1–sin2B, and we get sin2A+sin2B = 1.
 
If 0 < Q < pi/2, 0 < sinQ < 1, and it follows for all Q, sinQ > sin2Q.
 
As sin2A+sin2B = 1, it follows that sinA+sinB > 1.
 
Hence sinA+sinB+sinC > 2.
::
IP Logged

mathschallenge.net / projecteuler.net
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board