wu :: forums
« wu :: forums - YAHOO! questions »

Welcome, Guest. Please Login or Register.
Nov 12th, 2024, 4:50pm

RIDDLES SITE WRITE MATH! Home Home Help Help Search Search Members Members Login Login Register Register
   wu :: forums
   riddles
   cs
(Moderators: Grimbal, william wu, ThudnBlunder, SMQ, Icarus, towr, Eigenray)
   YAHOO! questions
« Previous topic | Next topic »
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print
   Author  Topic: YAHOO! questions  (Read 2330 times)
sanny
Newbie
*





   


Posts: 6
YAHOO! questions  
« on: Dec 3rd, 2008, 1:43am »
Quote Quote Modify Modify

1. You have 'n' number of balls and 'r' number of boxes. Find the probability that that first 'r1' boxes contains k balls.
 
2. you have a special crystall ball that breaks only when it is dropped from (or above) a certain storey 'n'  in a 64 storeyed building where 'n' can be 1<=n<=64. You have two crystall balls, how many (minimum) throws you have to make to find 'n' in the worst situation.
IP Logged
towr
wu::riddles Moderator
Uberpuzzler
*****



Some people are average, some are just mean.

   


Gender: male
Posts: 13730
Re: YAHOO! questions  
« Reply #1 on: Dec 3rd, 2008, 2:16am »
Quote Quote Modify Modify

For 1) I would think C(n, k) (r1/r)k([r-r1]/r)n-k
 
For 2) there are previous threads of much the same problem here and here.
A more general problem (with more than two balls/eggs) is here.
IP Logged

Wikipedia, Google, Mathworld, Integer sequence DB
dullhead
Newbie
*





   


Posts: 8
Re: YAHOO! questions  
« Reply #2 on: Dec 17th, 2008, 9:19pm »
Quote Quote Modify Modify

on Dec 3rd, 2008, 1:43am, sanny wrote:
1. You have 'n' number of balls and 'r' number of boxes. Find the probability that that first 'r1' boxes contains k balls.
 

Can one box contain more that one ball?
IP Logged
dullhead
Newbie
*





   


Posts: 8
Re: YAHOO! questions  
« Reply #3 on: Dec 18th, 2008, 12:52pm »
Quote Quote Modify Modify

on Dec 3rd, 2008, 2:16am, towr wrote:
For 1) I would think C(n, k) (r1/r)k([r-r1]/r)n-k

Can you explain how you got this answer. Choosing k balls out of n, takes c(n,k). after that how did you get the remaining term?
 
Thanks in advance.
IP Logged
towr
wu::riddles Moderator
Uberpuzzler
*****



Some people are average, some are just mean.

   


Gender: male
Posts: 13730
Re: YAHOO! questions  
« Reply #4 on: Dec 18th, 2008, 12:56pm »
Quote Quote Modify Modify

on Dec 18th, 2008, 12:52pm, dullhead wrote:
Can you explain how you got this answer. Choosing k balls out of n, takes c(n,k). after that how did you get the remaining term?

 
The probability that a given ball is put in the first r1 boxes is r1/r; so the probability that k given balls are put in the first r1 boxes is (r1/r)k
The other factor is the same reasoning for putting the rest of the balls in the rest of the boxes.
IP Logged

Wikipedia, Google, Mathworld, Integer sequence DB
River Phoenix
Junior Member
**





   


Gender: male
Posts: 125
Re: YAHOO! questions  
« Reply #5 on: Dec 21st, 2008, 3:32pm »
Quote Quote Modify Modify

FYI Yahoo! is no longer a real company. Be careful!
IP Logged
nks
Junior Member
**





   
Email

Gender: male
Posts: 145
Re: YAHOO! questions  
« Reply #6 on: Dec 22nd, 2008, 12:21am »
Quote Quote Modify Modify

Quote:
FYI Yahoo! is no longer a real company. Be careful
!  
 
How is it so ?
IP Logged
River Phoenix
Junior Member
**





   


Gender: male
Posts: 125
Re: YAHOO! questions  
« Reply #7 on: Dec 22nd, 2008, 2:36am »
Quote Quote Modify Modify

on Dec 22nd, 2008, 12:21am, nks wrote:

!  
 
How is it so ?

 
semi joking, but they've somewhat fallen apart, laid off a huge number of people, switched leadership around, and fallen catastrophically in value. they may be purchased by microsoft
IP Logged
tpraja
Newbie
*





   
WWW

Gender: male
Posts: 1
Re: YAHOO! questions  
« Reply #8 on: Jan 13th, 2009, 7:14am »
Quote Quote Modify Modify

Its not easy to get yahoo because yahoo now improving so many features.
 
« Last Edit: Jan 13th, 2009, 7:15am by tpraja » IP Logged
darklord
Newbie
*





   


Posts: 10
Re: YAHOO! questions  
« Reply #9 on: Apr 7th, 2009, 4:04am »
Quote Quote Modify Modify

didnt the first answer follow binomial distribution????
IP Logged
Pages: 1  Reply Reply Notify of replies Notify of replies Send Topic Send Topic Print Print

« Previous topic | Next topic »

Powered by YaBB 1 Gold - SP 1.4!
Forum software copyright © 2000-2004 Yet another Bulletin Board