Author |
Topic: Maximum modulus principle (Read 4303 times) |
|
kimtahe6
Newbie
Posts: 1
|
|
Maximum modulus principle
« on: Jun 20th, 2013, 8:06am » |
Quote Modify
|
Suppose $D=\Delta^n(a,r)=\Delta(a_1,r_1)\times \ldots \times \Delta(a_n,r_n) \subset \mathbb{C}^n$ and $\Gamma =\partial \circ \Delta^n(a,r)=\left \{ z=(z_1, \ldots , z_n)\in \mathbb{C}^n:|z_j-a_j|=r_j,~ j=\overline{1,n} \right \}$. Let $f \in \mathcal{H}(D) \cap \mathcal{C}(\overline{D})$. Prove that: $\sup_{z \in \overline{D}} |f(z)|=\sup_{z \in \Gamma} |f(z)|$ I think we apply maximum modulus principle, but i have trouble... Any help (or hint or another solution) would be greatly appreciated . Thanks.
|
|
IP Logged |
|
|
|
|