forcing variable
- prevmargin: PARTY vote share margin at t-1
main outcome variables
- winner: Party winning probability at t
- vshare: Party vote share at t
plot details
- bin size: 1%
- 3rd degree polynomial
Conservative Party
rdoptband_catch(con$prevmargin[which(is.na(con$prevmargin)==F)], con$winner[which(is.na(con$prevmargin)==F)], cutpoint = 0)
## Optimal Bandwidth RD Estimate Standard Error
## 0.13645864 -0.18741985 0.07230893
rdoptband_catch(con$prevmargin[which(is.na(con$prevmargin)==F)], con$vshare[which(is.na(con$prevmargin)==F)], cutpoint = 0)
## Optimal Bandwidth RD Estimate Standard Error
## 0.13063236 -0.03437639 0.01395966
rdrobust(con$winner, con$prevmargin)
## Call:
## rdrobust(y = con$winner, x = con$prevmargin)
##
## Summary:
##
## Number of Obs 1036
## BW Type mserd
## Kernel Type Triangular
## VCE Type NN
##
## Left Right
## Number of Obs 471 565
## Eff. Number of Obs 310 281
## Order Loc Poly (p) 1 1
## Order Bias (q) 2 2
## BW Loc Poly (h) 0.1369 0.1369
## BW Bias (b) 0.2491 0.2491
## rho (h/b) 0.5497 0.5497
##
## Estimates:
## Coef Std. Err. z P>|z| CI Lower CI Upper
## Conventional -0.1872 0.0917 -2.0404 0.0413 -0.3670 -0.0074
## Robust 0.0465 -0.4211 -0.0033
rdrobust(con$vshare, con$prevmargin)
## Call:
## rdrobust(y = con$vshare, x = con$prevmargin)
##
## Summary:
##
## Number of Obs 1036
## BW Type mserd
## Kernel Type Triangular
## VCE Type NN
##
## Left Right
## Number of Obs 471 565
## Eff. Number of Obs 323 300
## Order Loc Poly (p) 1 1
## Order Bias (q) 2 2
## BW Loc Poly (h) 0.1452 0.1452
## BW Bias (b) 0.2707 0.2707
## rho (h/b) 0.5365 0.5365
##
## Estimates:
## Coef Std. Err. z P>|z| CI Lower CI Upper
## Conventional -0.0335 0.0161 -2.0789 0.0376 -0.0650 -0.0019
## Robust 0.0492 -0.0733 -0.0001

Democratic Party
rdoptband_catch(dem$prevmargin[which(is.na(dem$prevmargin)==F)], dem$winner[which(is.na(dem$prevmargin)==F)], cutpoint = 0)
## Optimal Bandwidth RD Estimate Standard Error
## 0.13426911 -0.08299221 0.08751580
rdoptband_catch(dem$prevmargin[which(is.na(dem$prevmargin)==F)], dem$vshare[which(is.na(dem$prevmargin)==F)], cutpoint = 0)
## Optimal Bandwidth RD Estimate Standard Error
## 0.14551417 0.01157425 0.02416518
rdrobust(dem$winner, dem$prevmargin)
## Call:
## rdrobust(y = dem$winner, x = dem$prevmargin)
##
## Summary:
##
## Number of Obs 702
## BW Type mserd
## Kernel Type Triangular
## VCE Type NN
##
## Left Right
## Number of Obs 300 402
## Eff. Number of Obs 164 224
## Order Loc Poly (p) 1 1
## Order Bias (q) 2 2
## BW Loc Poly (h) 0.1258 0.1258
## BW Bias (b) 0.2218 0.2218
## rho (h/b) 0.5671 0.5671
##
## Estimates:
## Coef Std. Err. z P>|z| CI Lower CI Upper
## Conventional -0.0870 0.1118 -0.7783 0.4364 -0.3062 0.1322
## Robust 0.3859 -0.3728 0.1441
rdrobust(dem$vshare, dem$prevmargin)
## Call:
## rdrobust(y = dem$vshare, x = dem$prevmargin)
##
## Summary:
##
## Number of Obs 702
## BW Type mserd
## Kernel Type Triangular
## VCE Type NN
##
## Left Right
## Number of Obs 300 402
## Eff. Number of Obs 170 228
## Order Loc Poly (p) 1 1
## Order Bias (q) 2 2
## BW Loc Poly (h) 0.1340 0.1340
## BW Bias (b) 0.2342 0.2342
## rho (h/b) 0.5719 0.5719
##
## Estimates:
## Coef Std. Err. z P>|z| CI Lower CI Upper
## Conventional 0.0111 0.0292 0.3810 0.7032 -0.0462 0.0685
## Robust 0.7881 -0.0583 0.0768
