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Abstract 

The dynamic behavior of arrows upon release in Olympic archery is explored.  Mechanical properties 
that may affect the tune of the arrow to the archer and the bow, the forgiveness of the arrow to errors, and 

the clearance of the arrow from the bow are examined and discussed.  In addition to the classic properties 
of geometry and static spine, the mass distribution and natural frequencies of the arrow are considered.  
Initial experimental results are presented.  Recommendations for future arrow design are forwarded. 
 
 
 
I. INTRODUCTION 

 

The equipment used in Olympic archery has 
improved dramatically over the past three 
decades.  Most of these improvements were a 
result of new materials, such as carbon foams and 
fibers, which enabled arrows to be shot at greater 
velocities with less effort than previously 
possible, and improved manufacturing techniques, 

which have reduced the variability in performance 
between arrows in any given set.  Modern 
equipment, as shown in Figure 1, and the rule that 
the string must be drawn and released by the 

fingers have made the skill of the archer the 
greatest contributor to misplaced shots.  
In competition, arrows are shot in sets of up to six 

arrows.  The design of arrows in the past and 
present have thus focused on reducing the 
variability in the geometry, mass, and flexural 
properties between similarly constructed arrows.    
The reasoning was that if such variation were 
minimized, so would be the shot errors created by 
such variation.  A typical arrow construction is 

shown in Figure 2.  Many archery competitors 
spend a great deal of effort in selecting and 
matching the aforementioned properties in their 
sets of arrows. 

An arrow shaft is typically tubular in 
geometry, and constructed of aluminum, carbon 
fiber and epoxy, or a combination of these 

materials.  Shafts designed for outdoor 
competition are typically as thin as practical, to be 
less affected by crosswind.   The geometry, mass, 
and flexural properties of an arrow shaft are easily 
measurable quantities.  Thus, manufacturing 
techniques have been developed to reduce the 
variation in these qualities such that shafts of the 
same model perform essentially identical to one 

another.  
The ability of the equipment to resist errors 

induced by the archer, or by variation in the 
equipment itself, is called its “forgiveness”.  
Equipment that is forgiving will produce less 
error in arrow flight than equipment that is un-
forgiving, for the exact same mistake made by the 

archer.  
 

Figure 1.  An Olympic style recurve bow. 



 

 
 
 
 

 
 
 
 
 
 
 

 
  
The classical method of improving the 

forgiveness of the equipment is by “tuning” the 
arrow set to the bow and the archer.  There are 

many tuning methods that are used, some of 
which are only qualitative in nature.  Most tuning 
methods involve a process where the flexural 
stiffness of the shaft is selected based upon its 
length and draw weight of the bow from which it 
is shot.  Further tuning involves selection of a 
mass for the arrow point, adjustment of the 
sideways force on the arrow produced at the 

arrow rest, and fine adjustment of the draw 
weight of the bow.  Proper tuning of the 
equipment should minimize the probability that 
the arrow will strike the bow as the arrow is 
launched.   

 
 
 
 

 
 
 
 
 
 

 

 
 
It is possible, however, that classical methods 

for tuning the equipment for improving its 
forgiveness may not also minimize the probability 

of secondary contact between the arrow and bow 
upon launch.  A properly designed and properly 
selected arrow shaft should yield both qualities.  
An improperly designed or improperly selected 
shaft may be difficult or impossible to tune.  The 
following discussion describes a classical tuning 
technique, followed by a proposed design or 
selection technique that can be used to ensure that 

the arrow proper clears the bow upon launch.  The 
technique is confirmed by experimental 
measurements on two commercial arrow shafts 
that are known to perform well. 
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Figure 2.  Parts of an arrow. 
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Figure 3.  Effect of vanes on arrow flight. 



 

 
II. A QUALITATIVE REVIEW OF 

CLASSIC TUNING  

 

The most widely accepted method of 
equipment tuning is a process known as “bare-
shaft” tuning.  The purpose of bare-shaft tuning is 
to minimize the effort required for the vanes to 
correct the flight of the arrow.  This method thus 
minimizes the error dependence on the vanes, and 
possible variations in their construction and 
placement.The effect of the vanes in correcting 

initial arrow flight is shown in Figure 3.  In (a), 
without vanes, the path of the center-of-mass of 
the arrow and the axis of the arrow may not be 
aligned.  When vanes are added to the arrow in 
(b), any misalignment between the path of the 
center-of-mass and the axis of the arrow will 
result in a windage force on the vanes.  The 

windage force is highest at arrow launch, when 
the misalignment is the greatest.  When the 
misalignment switches to the other side of the 
arrow, the windage force also switches to that 
side, causing the arrow to wobble.  As shown in 
(c), the path of the arrow will be corrected in the 
direction of the original tail misalignment, which 

is the direction of the large initial correcting force, 
because the wobble is quickly damped out.   

Since the initial correction forces are greater 
when the initial misalignment is greater, the vanes 
tend to reduce the error to the desired arrow path 
as produced by release errors. The process of 
bare-shaft tuning involves shooting a group of 
arrows that have vanes, and then shooting a set of 

similarly constructed arrows that do not have 
vanes.  Assuming that there are no gross errors 
made by the archer, the vaned shafts and the bare 

shafts will typically land in two separate groups, 
as shown in Figure 4.   

In the case of Figure 4, the bare shafts have 
landed to the left of the vaned shafts.  This case 
indicates that the original misalignment of the 
arrow upon launch was the tail to the right of the 
original path of the center-of-mass, because the 
vaned shafts were corrected in that direction.  Had 
the bare shafts landed to the right of the vaned 
shafts, the original misalignment of the arrow 

upon launch was the tail to the left of the original 
path of the center-of-mass.   

The bare shaft group and the vaned shaft 
group can be forced to merge by adjusting the 
side pressure on the arrow upon launch with the 
plunger button at the arrow rest.  The plunger 
button, as shown in Figure 5 before and after an 

arrow is inserted, is spring loaded with a preload.  
Both the preload and the spring constant are 
adjustable.  

When an arrow is released from the fingers, 
the bowstring and tail of the arrow are deflected 
slightly sideways (to the left for an archer 
drawing with the right hand) as the string must 

still travel around the fingers after they are 
relaxed.  As the string pushes the arrow forward, 

Bare shaft 
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Figure 4.  Bare shaft tuning on a target face. 

Figure 5.  The plunger button. 



 

it also imparts a force directed sideways at the 

bow handle.  As a result, the plunger button is 
depressed.  Figure 6 shows the result if the 
preload or spring constant is overly compliant.  
The tip of the arrow moves toward the bow 
handle, causing the tail of the arrow to be oriented 

to the left of the intended flight path.  The error in 

the flight path would then be partially corrected 
by the vanes.  The amount of correction can be 
minimized by adjusting the stiffness or pre-load 
of the plunger spring. 
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Figure 6.  Overly compliant plunger button. 

Actual 
path of CM 

Desired 
path of CM 

Large 
restoring 

force 

Bow handle 

Spring loaded 
plunger 

Force from 
bowstring 

Deflection 
from fingers 

Figure7.  Overly stiff plunger button. 



 

If the plunger spring is overly stiff, as shown 
in Figure 7, the tip of the arrow rebounds off the 
plunger, causing the tail of the arrow to be 
oriented to the right of the intended flight path.  If 

however the stiffness of the plunger button is 
correctly chosen to compensate for the deflection 
error caused by the fingers upon release, the 
arrow would be aligned to the path of the center-
of-mass, the bare shafts would group with the 
vaned shafts and the equipment would be tuned. 

The stiffness of the plunger alone cannot be 
used to tune the arrows to the bow, because the 

arrows themselves are elastic.  In the arrow 
industry, the static stiffness is measured in terms 
of a flexural deflection called “spine”, which is 
defined when a standard force is applied to the 
center of a standard length shaft, as defined in 
Figure 8.  For a simply supported Euler-Bernoulli 
beam that is loaded in the center with a 

concentrated force, the maximum deflection of 
the beam (at the center) is Gere and Timoshenko 
(1997) 

 

       
   

    
  (1) 

 
where w = transverse deflection 

P = static load applied at the center 

L = distance between the supports 
E = elastic modulus 
I = area moment-of-inertia about the 
neutral axis for the cross section of the 
beam 

 
For a tube, which is the most common shape for 

an arrow shaft, the area moment-of-inertia is 
 

    
 

  
   

    
   

 
where  Do = outer diameter of the tube 

 Di = inner diameter of the tube 
 

It is important to note that the static flexural 
stiffness of the beam, which is the arrow shaft in 
this case, is independent of the mass off the shaft, 
and also independent of the mass of any 

components added to the shaft (that do not also 
contribute to the elastic modulus or area moment 
of inertia).   

It is evident from Equation (1) that, with the 
length of the shaft held constant, that the flexural 
stiffness may be increased by increasing the 
elastic modulus, as by changing the material from 
aluminum to carbon composite.  The flexural 

stiffness can also be dramatically increased by 
increasing the outer diameter of the shaft, which 
can be done without increasing the mass of the 
shaft if the inner diameter is also increased 
appropriately. 

The static spine of an arrow shaft is most 
often used as a reference, or starting point, for the 

selection of an arrow shaft that can be tuned to the 
bow.  The spine of an arrow shaft is a reference 
indication of the relative stiffness or flexibility of 
the shaft, in itself cannot be used as a means of 
selecting a shaft that will tune to the bow with a 
given draw weight.  The flexibility of the shaft 
acts in conjunction with other factors, including 

the stiffness of the plunger button and the mass 
placed at the tip and tail of the shaft. 

The mechanics of arrow deformation at the 
instant of release is illustrated in Figure 9.  The 
tail of the arrow is deflected sideways by the 
fingers.  The amount and the repeatability of the 
deflection is determined by the skill of the archer.  
The sideways deflection and the load from the 

bowstring in a direction along the shaft causes the 
shaft to buckle slightly.  The amount of buckling 
depends on the flexural stiffness of the shaft, the 
amount of any mass pile at the tip or tail, and (to a 
lesser extent) the mass of the shaft itself.  In a 
typical application, the mass of the point placed at 
the tip ranges from 40-80% of the mass of the 

shaft alone.  A larger mass at the tip of the arrow 

880 gmf 

Spine deflection 

71.12 cm 

Un-deformed shaft 

Deformed shaft 

Figure 8.  Definition of static spine. 



 

will causes the tip to resist the initial change in 
motion from the force applied by the shaft, 
causing the shaft to deform more, with the same 
effect as decreasing the stiffness of the shaft.  A 
smaller tip mass would have the opposite effect. 

Conversely, a larger mass at the tail of the arrow 
creates a tendency for the tail to resist the initial 
change in motion from the force applied to the 
bowstring, causing the shaft to deform less, with 
the same effect as increasing the stiffness of the 
shaft.  Reducing the tail mass would have the 
opposite effect.   

The deformation of the arrow upon release 
creates the same effect as depressing the plunger 
button in altering the flight path of the arrow by 
changing the path of its center-of-mass.  The 
compliance of the arrow can thus be added to the 
compliance of the plunger button in much the 
same way as would be springs in series.  If their 
combination is overly stiff, the tail of the arrow 

initially will leave the bow oriented to the right of 
trajectory of the arrow center-of-mass (for a right-
hand release) and the bare shafts will group to the 
left of the vaned shafts.  The two groups can be 
forced to merge by reducing the flexural stiffness 
of the arrow, or the plunger button, or both.  If the 
combination of the shaft and the plunger button is 

overly compliant, the tail of the arrow will leave 
the bow oriented to the left of the trajectory of the 
arrow center-of-mass (for a right-hand release) 
and the bare shafts will group to the right of the 

vaned shafts. In this latter case, the two groups 
can be forced to merge by increasing the flexural 
stiffness of the arrow, or the plunger button, or 
both. 
 

III. THE ARCHER’S PARADOX AND 

CLEARANCE FREQUENCY 

 
Following the initial transverse deflection 

cause by the necessity for the bowstring to travel 
around the fingertips upon release, and the 
buckling caused by the force of the bowstring, the 

arrow shaft rebounds by deforming in the 
opposite transverse direction.  This rebound is 
illustrated in Figure 10. 

In the absence of any further transverse 
forcing function, the transverse response of the 
arrow becomes a summation of its transverse 
Eigen-modes at their natural frequencies.  The 
first three Eigen-modes for arrow flexure are 

illustrated in Figure 11.  Generally, the first 
Eigen-mode is the most significant because it 
carries the largest amplitude.  If the frequency of 
the first Eigen-mode is correctly selected, the 
arrow will be launched from the bow without 
striking any part of it (including the plunger 
button) despite its transverse deformation.  This 

phenomenon is known in the archery trade as the 
“archer’s paradox”, where the arrow “bends 
around the bow”.   
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Figure 9.  Buckling deformation of an arrow upon release. 
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Figure 10.  Arrow shaft rebound in the Archer’s Paradox 
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Figure 11. First three vibration modes of an arrow. 



 

The ideal transverse arrow flexure for bow 
clearance, considering only the first mode, is 
shown in Figure 12.  For clarity of illustration, the 
bow handle in this figure is shown moving with 

respect to the arrow so that the arrow vibration 
can be more clearly visualized.  The arrow begins 
its vibration cycle upon release.  If one complete 
cycle is concluded by the time the rear node of the 
arrow passes the plunger button, as shown in 
Figure 12(e), there should be no contact between 
the two objects between the nodes of the arrow.  
At this time, the part of the arrow rearward of the 

rear node is also moving transversely away from 
the plunger button.  The vibration frequency for 
this occurrence can be found by calculating the 
time needed for the rear node of the arrow to 
reach the location of the plunger button from its 
starting position when the bow is at full draw.  
This time would be the time required for one full 

cycle. 
Another situation of interest occurs if the tail 

end of the arrow passes the plunger button at 1.25 
cycles, as shown in Figure 12(f).  This condition 
presents the greatest amount of clearance between 
the tail and the plunger button, and offers the 
greatest clearance for vanes that are mounted to 

the tail.  The vibration frequency for this 
occurrence can be found by calculating the time 
needed for the rear end of the arrow to reach the 
location of the plunger button from its starting 
position when the bow is at full draw.  This time 
would be the time required for 1.25 cycles. 

Examination of the theoretical solution for 
vibration of the shaft offers considerable insight 

into the factors that affect the frequency of 
vibration of an arrow.    The Euler-Lagrange 
equation that describes the dynamic behavior of 
an Euler-Bernoulli beam is according to Craig 
(1981) 
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where w = deflection 
 x = location along the beam 

  t = time 
q = load (a function of time and  

location along the beam) 
µ = mass density per unit  

length of the beam 
 

In this case, the arrow is attached to the bowstring 

at the nock, but the sideways deflection is slight, 

and thus offers very little constraining load in the 
transverse direction once the arrow has been 
released.  Not yet considering the concentrated 
masses at the tip and tail of the arrow, the arrow 

vibrates with free-free boundary conditions in the 
transverse direction.  The boundary conditions for 
Equation (2) are thus 

 
   

   
      and    

   

   
    (3) 

 
When Equation (2) is integrated over the length of 
the shaft, the natural frequencies of the shaft for 
the jth mode are 

 

   
  

 
 

  

 
    (4) 

 
where ωj = the jth natural frequency 

 λj = the jth Eigen-value 

 
Generally, only the first natural frequency and 
mode shape are of significance when considering 
the proper clearance of the arrow from the bow.   
Later testing with an accelerometer and spectrum 
analyzer would show that the second and third 
modes have less than 10% and 1%, respectively, 

the energy of the first mode.   
The form of Equation (4) shows some 

important relationships between the construction 
of an arrow and it natural frequencies.  The 
natural frequencies are inversely proportional to 
length, proportional to the square of the outer 
radius, proportional to the square root of the 
elastic modulus, and inversely proportional to the 

square root of mass per unit length.  All the 
relationships need to be considered when 
designing or modifying an arrow for the proper 
clearance frequency.  In addition, when masses 
are placed at the tip and tail of the shaft, the 
natural frequencies will certainly be decreased as 
the added mass increases.  

The variables that affect static flexure and 
dynamic vibration of an arrow are closely related.  
For example, increasing either the elastic modulus 
of the shaft material or the outer radius of the 
shaft (even without increasing its mass) would 
increase both static spine and the frequency of 
vibration.  Increasing the length of the shaft 

would decrease both static spine and vibration 
frequency.  However, adjustment of other 
variables would create counter affects.   

 



 

For example, decreasing the density of the 

shaft material has no affect on static spine, but 
would increase the vibration frequency. 
Increasing the mass at the tail of the shaft would 
have no effect on the static spine, would cause the 
arrow to appear stiffer when launched, but would 
decrease the frequency of vibration.  Clearly there 
are sufficient variables that can be adjusted that 

would cause an arrow to be tuned by classic bare 

shaft testing, but can make the clearance of the 

shaft and vanes either optimal or sub-optimal. 
 

IV. EXAMPLES OF CLEARANCE 

FREQUENCY CALCULATION 

 
Two cases were considered as examples of 

calculating the ideal clearance frequencies.  One 

was the case of an arrow made with an Easton 
ACC 3L-18 shaft.  The second was an arrow 

Figure 12.  Illustration of the ideal clearance frequency for the first Eigen-mode. 
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made from a Carbon Tech McKinney II 600 shaft.  
Both arrows were 76.5 cm (30.12 in) long from 
the nock groove to the tip of the point.  Both types 
of arrows were shot from AMO 68” recurve bow 

made from a 25” Hoyt Matrix handle with Hoyt 
M1 limbs and 16 strand BCY 8125 Dyneema 
bowstring.  The final draw weight was 169 N (38 
lb).  The distance from the plunger button to the 
neutral position of the string, known in the 
industry as the “brace height” was 22.5 cm (8.87 
in).  The bow was drawn an additional 48.6 cm 
(19.13 in) to achieve the final draw weight.  Both 

arrows were shot for several weeks by an 
experienced archer, and were successfully tuned 
using the bare shaft method.  High-speed video 
and close inspection of the arrows for signs of 
contact confirmed that both types of arrows 
cleared the bow well.  The location of the nodes 
for the first Eigen-mode for an arrow were found 

by gently holding the arrow shaft between two 
fingers and continually tapping the far end of the 
arrow against a padded surface, such as 
upholstered chair.  The nodes were located where 
the resulting vibration was felt to be at its 
minimum. 

The final velocity of the arrow at launch was 

calculated with an energy balance.  The limbs 
were assumed to produce a draw force that was 
linear with draw distance.  The bow was assumed 
to be a modern recurve bow with a limb and 
string efficiency of 90%.  A balance of the kinetic 
energy of the arrow with the potential energy in 
the limbs gives 
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where  ma = total mass of the arrow 

 vo = final speed of the arrow  
 ε = efficiency of the bow (90%) 
 Fo = final draw weight 
 ho = draw beyond the brace height 
 

  The time required to achieve the final arrow 
velocity is the time required for the bowstring to 
return to its neutral position, where the arrow is 

assumed to separate from the string, from being 
released from the drawn position.  The arrow on 
the string is analogous to a mass on a linear 
spring.  The frequency for such a system is  
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or    
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where k = spring constant for the arrow  

on the bowstring = Fo/ho 
 

When the bowstring completes 0.25 cycle, it has 
returned to its neutral position.  Thus the time for 
it to reach this position is 
 

   
 

 
 

    

   
       (7) 

 
Once this time and position has been reached, the 
arrow continues forward at the velocity specified 
by Equation 5.  The time for the first node to pass 

the plunger button becomes 
 

      
     

  
     (8) 

 
where  hb = brace height 

hn = distance from the tail to the rear node 

 
The clearance frequency for the arrow requires 
that one cycle be completed in the time specified 
by Equation (8).  The clearance frequency is thus 
 

   
 

  
        (9) 

 
The time for the tail end of the arrow to pass the 
plunger is 
 

      
  

  
      (10) 

 
Maximum clearance between the tail and the 

plunger requires that 1.25 cycles be completed in 
the time specified by Equation (10).  The 
frequency for maximum tail clearance is thus 
 

   
    

  
 

 
The results of the calculations for the two test 

cases are shown in Figure 13.  For the bow, draw 
length and draw weight specified, the calculations 
predict a final arrow velocity of 57.9 ms and 63.9 
m/s for the ACC and McKinney II arrows, 



 

respectively.  The clearance frequencies were 66 
Hz and 78 Hz, respectively.  The maximum vane 
clearance frequencies were 72 Hz and 80 Hz, 
respectively. 

 
V. EXPERIMENTAL MEASUREMENT OF 

ARROW FREQUENCIES 

 
The natural frequencies of the arrows used in 

the two test cases were measured using an 
accelerometer and a spectrum analyzer.  The 
accelerometer was an Endevco model 22, which 

was mounted on the arrow on its point using a 
thin layer of mounting wax and secured with 
Mylar tape.  The arrow was excited by holding it 
gently between two fingers at the approximate 
location of the front node and tapping the tail 
against a padded surface.  A total of 6 arrows of 
each type were tested.  The experimental setup is 

shown in Figure 14. 
The first three natural frequencies were easily 

identifiable.  The repeatability and variation of the 
frequencies between arrows of the same type were 
less than 0.5 Hz for the first mode, 1 Hz for the 
second mode, and 2 Hz for the third mode.  The 
results of the tests, with the average measured 

frequencies are shown in Figure 15.  The results 

show a remarkably good match with the predicted 
frequencies required for proper clearance of the 
arrow and its vanes. 

 

VI. CONCLUSIONS AND IMPLICATIONS 

FOR FUTURE ARROW DESIGN 

 
The prediction and measurement of at least 

the first natural frequency of an arrow may offer 
new clarity in proper arrow design and proper 
tuning of arrows for optimal forgiveness and 
proper clearance from the bow.  Although many 

arrow shafts on the market today appear to offer 
proper clearance at the same time that the arrow is 
tuned by the classic (bare-shaft) method, these 
designs may have been the result of natural 
evolution of arrow shaft design, as unsuccessful 
designs are soon eliminated from the market for 
their poor performance.  The examination of 

arrow frequencies may become more important as 
lighter stiffer materials are developed and used in 
shaft construction.  Future arrow design may see 
the development of shafts that are very thin (for 
cross-wing resistance), but also very light and 
very stiff.  Tip and tail masses may then be added 
as needed to achieve the desired total arrow mass, 

point mass for stability and tunability by classical 

Arrow Type: Easton ACC, 3L-18 
Spine:  620 (1.58 cm) 
Shaft Weight: 222 gr 
Shaft Length: 74.93 cm 
Point:  100 gr 
Nock:  Easton G, 7 gr 
Vanes:  4.44 cm Spin Wings, 2 gr 
Rear node: 12.7 cm from tail (5 in) 
  (measured) 
Total Mass: 341 gr 
Brace height: 22.5 cm (8.87 in) 
Draw height: 48.6 cm (19.13 in) 
Draw weight: 169 N @ 48.6 cm 
  (38 lb @ 19 in) 
 
Predicted results: 
Arrow speed:  57.9 m/s (190 ft/s) 
Clearance frequency: 66 Hz 
Max vane clearance: 72 Hz 

Arrow Type: Carbon Tech MK 2 
Spine:  600 (1.52 cm) 
Shaft Weight: 161 gr 
Shaft Length: 73.66 cm 
Point:  110 gr 
Nock:  Easton G, 7 gr 
Vanes:  5.08 cm Spin Wings, 2 gr 
Rear node: 17.8 cm from tail (7 in) 
  (measured) 
Total Mass: 270 gr 
Brace height: 22.5 cm (8.87 in) 
Draw height: 48.6 cm (19.13 in) 
Draw weight: 169 N @ 48.6 cm 
  (38 lb @ 19 in) 
 
Predicted results: 
Arrow speed:  63.9 m/s (209 ft/s) 
Clearance frequency: 78 Hz 
Max vane clearance: 80 Hz 

Figure 13.  Arrow construction and predicted clearance frequencies for two cases. 



 

methods, tail mass for additional forgiveness and 
tunability by classical methods, and arrow 
frequency for proper clearance. 
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Endevco 22 

Endevco 104 Endevco 109 

HP 35660A 

Figure 14.  Experimental setup for measuring the natural frequencies of an arrow. 

Arrow Type: Easton ACC, 3L-18 
Spine:  620 (1.58 cm) 
Shaft Weight: 222 gr 
Shaft Length: 74.93 cm 
Point:  100 gr 
Nock:  Easton G, 7 gr 
Vanes:  4.44 cm Spin Wings, 2 gr 
Rear node: 12.7 cm from tail 
  (measured) 
Total Mass: 341 gr 
 
Measured Frequencies 
1st Mode: 68 Hz 
2nd Mode: 207 Hz 
3rd Mode: 424 Hz 

Arrow Type: Carbon Tech MK 2 
Spine:  600 (1.52 cm) 
Shaft Weight: 161 gr 
Shaft Length: 73.66 cm 
Point:  110 gr 
Nock:  Easton G, 7 gr 
Vanes:  5.08 cm Spin Wings, 2 gr 
Rear node: 17.8 cm from tail 
  (measured) 
Total Mass: 270 gr 
 
Measured Frequencies 
1st Mode: 78 Hz 
2nd Mode: 244 Hz 
3rd Mode: 492 Hz 

Figure 15.  Arrow construction and measured frequencies. 


