
100 PRISONERS AND A LIGHT BULB

WILLIAM WU

Abstract. We present a variety of different protocols for solving the “100 Prisoners and
a Light Bulb” riddle, including explicit computations of average runtimes.

This is an updated and corrected version of the original unpublished document released on
December 5, 2002 at http://www.ocf.berkeley.edu/~wwu/. The protocols presented here
should be attributed to many members of [wu::forums], an online forum of mathematical
riddles at wuriddles.com. Our quest to optimize the 100 prisoners problem is never ending,
and there are many clever algorithms that have yet to be incorporated in this article.
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1. The Riddle

One hundred prisoners have been newly ushered into prison. The warden tells

them that starting tomorrow, each of them will be placed in an isolated cell,

1
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unable to communicate amongst each other. Each day, the warden will choose

one of the prisoners uniformly at random with replacement, and place him in

a central interrogation room containing only a light bulb with a toggle switch.

The prisoner will be able to observe the current state of the light bulb. If he

wishes, he can toggle the light bulb. He also has the option of announcing that

he believes all prisoners have visited the interrogation room at some point in

time. If this announcement is true, then all prisoners are set free, but if it is

false, all prisoners are executed.

The warden leaves, and the prisoners huddle together to discuss their fate.

Can they agree on a protocol that will guarantee their freedom?

It may seem surprising at first that such a protocol could exist. We will present an
assortment of such protocols that guarantee freedom, and analyze and compare the average
number of days that each protocol requires. To compare the protocols fairly, we will express
their average runtimes in terms of N , where n is the number of prisoners in general.

Before we begin, some preliminary remarks. Unless otherwise stated, we will make the
following assumptions throughout this paper:

(1) Prisoners can count how may days have elapsed.
(2) The initial bulb state is OFF.

The second assumption is a trivial consequence of the former, since we can have the prisoner
who enters on the first day turn the bulb OFF. However, dropping the first assumption
would render many of the more advanced protocols infeasible.

2. Contributions and Related Work

The objective of this work is to systematically collect and analyze all known algorithms
for solving the 100 Prisoners and Light Bulb riddle. The 2004 Mathematical Intelligencer
article by Dehaye, Ford and Segerman [1] also discusses solution protocols for 100 Prisoners
and Light Bulb. In their article, more effort is spent discussing interesting variants of the
riddle (13 out of 18 pages) than the original riddle. Our main contribution, in contrast, is to
provide detailed probabilistic analyses for all known solutions to the original riddle, including
some algorithms not discussed in [1]. We have not seen this information provided elsewhere
with this level of detail. We also correct some errors in the description of the binary tokens
scheme presented in [1].

The protocols presented here should be credited to the combined efforts of many dedi-
cated members of [wu::forums], an online community forum of mathematical riddles at
wuriddles.com.

3. Origins of the Riddle

Unfortunately the origins of this riddle are unclear, so the author can only discuss his
personal experiences. He first heard about it in 2001, through members of the University

wuriddles.com
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of California Berkeley Chapter of Eta Kappa Nu (HKN), an Electrical Engineering Honor
Society. Puzzles are often circulated in HKN because new students seeking to be inducted
into the society are required to complete a series of challenges, and often these challenges
come in the form of logical or mathematical puzzles. Later, in 2002, the author found the
problem also listed on one of the challenges webpage of IBM Research [2], wherein it was
mentioned that “this puzzle has been making the rounds of Hungarian mathematicians’
parties”.

Here is a whimsical piece of history. When the author posted the riddle in 2002 on his
website wuriddles.com, he add some fictional story line of his own. Namely, he wrote that
if the assertion that all prisoners have been in the room is false, the prisoners would be “shot
for their stupidity”, whereas if the assertion is true, the prisoners are “set free and inducted
into MENSA, since the world could always use more smart people.” And due to the “slashdot
effect”, this wording of the puzzle involving MENSA can now be found in many places. In
retrospect, the qualifier clause for MENSA is not very logical, since nothing could be more
dangerous than criminally-minded smart people. In any case, if you see a wording of the 100
prisoners problem that involves MENSA, you now know who added that nonsense.

4. I’m Feeling Lucky Protocol

4.1. Protocol. The days are split into n-day blocks. During each n-day block, each prisoner
operates according to the following instructions upon entering the interrogation room:

• If it is day 1 for the current block:
– If the bulb is OFF, turn the bulb ON.
– If the bulb is already ON, and the first n-day block has already elapsed, announce

that all prisoners have visited.
• On any other day of the current block:

– If it is your first time visiting the room during the current block, do nothing.
– If it is your second time visiting the room during the current block, turn the

light OFF.
– If it is your third or more time visiting the room during the current block, do

nothing.

The general idea is that eventually, with probability 1, we will be lucky enough to have a
block of n-days during which no prisoner enters the room twice, or in other words, during
which every prisoner will enter the room exactly once. Then the bulb which was turned ON
on day 1 will still be ON after n-days, since bulbs are only turned OFF upon a second return
visit. Thus, if the bulb remains ON on the first day of a new block, we know that every
prisoner must have visited the interrogation room during the block that had just elapsed.

4.2. Expected Runtime. We now compute the expected runtime of this protocol. Let X
be the number of days the protocol requires. Let B be the number of n-day blocks required
till the protocol succeeds. Then B is a geometric random variable with parameter

n

n
· n − 1

n
· n − 2

n
· n − 3

n
· · · 1

n
=

n!

nn
.
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Since the expectation of a geometric random variable is the reciprocal of its parameter, and
X = nB, the expected number of days required is

(1) E
[
X(i’m feeling lucky)

]
= nE [B] = n

nn

n!
=

nn+1

n!
.

Using Stirling’s approximation n! ∼
√

2πn
(

n
e

)n
, and big-O notation,

(2) E
[
X(i’m feeling lucky)

]
∼ 1√

2π
n1/2en = O(n1/2en).

When n = 100, E [X] equals 1.072× 1044 days. We can expect the prisoners to be long dead
by then, and thus, it would behoove us to design a faster protocol.

5. Single Counter Protocol

5.1. Protocol. One of the possible sources of difficulty in solving this riddle is the natural
idea that every prisoner should should follow the same instructions. I will call such a protocol
symmetric; the previous protocol is an example of such. Realizing that such a constraint does
not actually exist, we can design a simple asymmetric scheme that performs much better,
allowing the prisoners to escape within a reasonable amount of time on average.

Letting prisoners have different roles, we assign one prisoner to be “the counter”. He will
maintain an integer variable in his head that is initialized to 1. Call this variable T . Upon
entering the room, prisoners adhere to the following instructions:

• If you are not the counter:
– If the bulb is OFF, and you have never turned the bulb ON before, turn it ON.
– If the bulb is ON, do nothing.

• If you are the counter:
– If the bulb is OFF, do nothing.
– If the bulb is ON, turn it OFF, and set T=T+1.
– If T = n, announce that all prisoners have visited.

The idea behind this protocol is that every prisoner besides the counter will turn ON the
bulb exactly once, whenever he can. When the bulb is ON, no one can turn it OFF except for
the counter. Eventually the counter will enter the room, turn this bulb OFF, and increment
the count T . In this way, each prisoner indicates his presence in the room to the counter by
leaving an ON bulb which is eventually recorded by the counter.

5.2. Expected Runtime. To analyze the runtime, we can split the process into epochs.
Let Xi denote the number of days between the first day on which T = i, and the first day
on which T = i + 1. Between these two days, two events must occur:

(1) An unrecorded prisoner must be chosen, causing the bulb to be turned ON. Let Yi

denote the number of days between from when T = i until this event occurs.
(2) The counter must then enter the room to record this ON bulb. Let Zi denote the

number of days from when the bulb is turned ON until this occurs.
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Then
Xi = Yi + Zi.

Letting X be a random variable corresponding to the number of days the protocol requires
in total, we have

X =

n−1∑

i=1

Xi =

n−1∑

i=1

(Yi + Zi).

Yi is a geometric random variable with parameter n−i
n

, and Zi is a geometric random variable
with parameter 1

n
. Hence, by linearity of expectation, the expected runtime is

E
[
X(one counter)

]
=

n−1∑

i=1

(E [Yi] + E [Zi])

=

n−1∑

i=1

(
n

n − i
+ n

)

= (n − 1)n + n

n−1∑

i=1

1

i

= n2 − n + nHn−1.

(3)

In big O, since Hn ∼ lnn,

(4) E
[
X(one counter)

]
= O(n2).

When n = 100, E [X] equals 10417.74 days, or 28.54 years, which is still within the span of
a young prisoner’s lifetime.

The variance of this protocol may also be easily computed. Since the variance of a sum of
independent random variables is the sum of the variances, and the variance of a geometric
random variable with parameter p is 1−p

p2 ,

var(X(one counter)) =

n−1∑

i=1

(var(Yi) + var(Zi))

=

n−1∑

i=1

(

1 −
(

n−i
n

)

(
n−i
n

)2 +
1 − 1

n
(

1
n

)2

)

=

n−1∑

i=1

(
ni

(n − i)2
+ (n − 1)n

)

= n(n − 1)2 + n
n∑

i=1

i

(n − i)2

= n(n − 1)2 + n
n∑

j=1

(
n

j2
− 1

j

)

= n(n − 1)2 + n(nHn−1,2 − Hn−1)

(5)
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where Hn,2 :=
∑n

i=1
1
i2

. Asymptotically,

(6) var(X(one counter)) = O(n3).

The one counter protocol is the “standard solution” to the puzzle. In the sequel, we will
describe some less well-known solutions that perform even better.

6. One Counter Protocol, with Non-Counters Feeling Lucky

6.1. Protocol. Under the one counter protocol, the prisoners escape if and only if the bulb,
which is initially OFF, alternates its state from OFF to ON exactly n−1 times. Non-counters
can also count these state transitions as they witness them. So, a marginal improvement in
the algorithm can be made by realizing that if any very lucky non-counter witnesses all n−1
such transitions before the counter does, then the non-counter is equally qualified to declare
victory and preempt the counter in the very last epoch of the algorithm.

Since the standard one counter protocol already requires a runtime of O(n2), and this
new policy for non-counters can only save at most n days (since it only affects the last
epoch), the improvement does not affect the asymptotics, so we will not mention it again.
Furthermore, the probability of a non-counter declaring victory under this scheme approaches
zero extremely quickly as n grows. The author’s explicit computations for this probability
are a bit long, so they are left to Appendix B.

7. One Counter Protocol, with Dynamic Counter Assignment

7.1. Protocol. The One Counter Protocol can be slightly improved by assigning the role
of counter dynamically, rather than a priori. We use the following policy: the counter is the
first person to enter the room twice in the first n days.

• Stage I: Days 1 through n:
– Days 1 through n − 1: The first person to enter the room twice will turn the

bulb ON, and assign himself to be the counter.
– Day n: If the light is still OFF, declare victory. Otherwise, turn off the light.

• Stage II: (all remaining days)
Follow the normal One Counter Protocol, but with the following modifications:
– The counter only counts up to n − k + 1, where k is the index of the day that

the counter entered the interrogation room twice.
– Prisoners who saw an ON bulb in Stage I do nothing.

To illustrate the idea behind this protocol, suppose we have 100 prisoners, and the first
person to enter the interrogation room twice enters on day 20. This prisoner becomes the
counter, and he can deduce that in the previous 19 days, there have been exactly 19 distinct
visitors, including himself. Thus, when Stage II ensues, he would only need to tally (n-1) -
(k-2) = n-k+1 = 99-18 = 81 prisoners. Lastly, if we are so lucky that no counter is assigned
on the 100th day, then every visitor in the first 100 days must have been distinct (as in the
I’m Feeling Lucky scheme), so we declare victory.



100 PRISONERS AND A LIGHT BULB 7

7.2. Expected Runtime. We now compute the expected runtime of this modified protocol.
Let the random variable X represent the total number of days till victory is declared, and
let the random variable K represent the day on which a prisoner first re-enters the room.
By the total probability theorem,

(7) E [X] =

n+1∑

k=2

P [K = k]E [X|K = k] .

We now compute each of these terms. First we will compute E [X|K = k]. By the pigeonhole
principle, the largest possible value of K is n + 1. In the special case that K = n + 1, we
should have X = n, since we will declare victory on day n. Excluding this case for now,
suppose K ≤ n. Then, in Stage II, the counter must count up to n − K + 1. To see
this, observe that in the first K days, there are K − 1 distinct prisoners including the
counter himself, and thus K − 2 prisoners which the counter will not have to count in
Stage II. Since the counter normally has to account for n − 1 other prisoners, this leaves
n− 1− (K − 2) = n−K + 1 remaining that are unaccounted for. E [X|K = k] can then be
broken into epochs, just as we did in analyzing the One Counter Protocol. We first add n
days, since that is the fixed length of Stage I. Then, starting in Stage II, the number of days
till the first unaccounted prisoner enters the room and turns ON the bulb is a geometric
random variable with parameter n−k+1

n
. Afterwards, the number of days till the counter

records this bulb is a geometric random variable with parameter 1
n
. The number of days till

the second unaccounted prisoner enters is then a geometric random variable with parameter
n−k

n
, and so forth. Thus,

X|{K = k} = n +

n−k+1∑

i=1

(Y
(k)
i + Z

(k)
i )

where Y
(k)
i ∼ geom

(
n−k+2−i

n

)
and Z

(k)
i ∼ geom

(
1
n

)
for i ∈ {1, 2, . . . , n − k + 1}. Taking

expectation,

E [X|K = k] = n +
n−k+1∑

i=1

(

E
[

Y
(k)
i

]

+ E
[

Z
(k)
i

])

= n +
n−k+1∑

i=1

(
n

n − k + 2 − i
+ n

)

= n + n(n − k + 1) + n

n−k+1∑

i=1

1

n − k + 2 − i

= n + n(n − k + 1) + n

n−k+1∑

i=1

1

i

= n(2 + n − k + Hn−k+1).

(8)

Observe that this formula also works in the fringe case that K = n + 1, in which case

E [X|K = n + 1] = n(2 + n − n − 1 + H0) = n.
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Secondly, we must compute P [K = k]. Comparing each draw of a random prisoner to a
ball thrown into one of n bins, P [K = k] is the probability that the first bin collision occurs
on the kth throw. Stepping through the process, the probability that the first throw has no
collision is 1. Afterwards, the probability that the second throw has no collision is n−1

n
, and

the probability that the third throw does not collide with either of the first two throws is
n−2

n
. These misses continue until the (k − 1)th throw. The probability of the kth throw then

being the first collision is then k−1
n

. Hence,

P [K = k] = 1 · n − 1

n
· n − 2

n
· · · n − (k − 2)

n
· k − 1

n
=

nk−1

nk
(k − 1).(9)

Note that since a probability mass function sums to 1, we apparently have 1 =
∑n+1

k=2
nk−1

nk (k−
1). We can rewrite this as the following identity, which we will use in the future:

n =
n∑

k=1

nk

nk
k.(10)

Plugging Equations 8 and 9 into Equation 7, we have

E
[
X(dynamic one counter)

]
=

n+1∑

k=2

P [K = k]E [X|K = k]

=
n+1∑

k=2

nk−1

nk
(k − 1) · n(2 + n − k + Hn−k+1)

=
n+1∑

k=2

nk−1

nk−1
(k − 1) · (2 + n − k + Hn−k+1)

=
n∑

k=1

nk

nk
k(1 + n − k + Hn−k)

=
n∑

k=1

nk

nk
k(1 + n) +

n∑

k=1

nk

nk
k(Hn−k − k)

= n2 + n +

n∑

k=1

nk

nk
k(Hn−k − k)

(11)

where in the last equality we have used Equation 10. The asymptotics of this expression can
be crudely upper bounded to be no worse than those of the original one-counter scheme:

E [X] ≤ n2 + n +
n∑

k=1

nk

nk
k(Hn − 0)

= n2 + n + (ln n)
n∑

k=1

nk

nk
k

= n2 + n + n lnn.

(12)
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Using some delicate bounding, one can also show that the big O runtime of this modified
protocol is actually strictly less than n2, and thus asymptotically superior. The author has
been unable to find a short proof of this, so for the sake of brevity, the proof is omitted here.

However, using Equations 3 and 11, it does not take more than a page to analytically
show that dynamic counter assignment does constitute an improvement in average runtime
over the One Counter scheme:

E
[
X(one counter)

]
− E

[
X(dynamic one counter)

]
= n2 − n + nHn−1 − n2 − n −

n∑

k=1

nk

nk
k(Hn−k − k)

= nHn−1 − 2n +

n∑

k=1

nk

nk
k(k − Hn−k)

≥ nHn−1 − 2n +

n∑

k=1

nk

nk
k(k − Hn−1)

= nHn−1 − 2n +

n∑

k=1

nk

nk
k2 − Hn−1

n∑

k=1

nk

nk
k

= nHn−1 − 2n +

n∑

k=1

nk

nk
k2 − nHn−1

=
n∑

k=1

nk

nk
k2 − 2n

=
n∑

k=1

nk

nk
k2 − 2

n∑

k=1

nk

nk
k

=
n∑

k=1

nk

nk
(k2 − 2k)

= −1 +
n∑

k=2

nk

nk
(k2 − 2k)

= −1 +
n∑

k=3

nk

nk
(k2 − 2k).
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The terms in the summation are all positive. Assuming n ≥ 4, we can lower bound the first
term in the summation by

nk

nk
(k2 − 2k)

∣
∣
∣
∣
k=3

= 6
n3

n3

= 6
n(n − 1)(n − 2)

n3

= 6

(

1 − 1

n

)(

1 − 2

n

)

≥ 6

(

1 − 1

4

)(

1 − 2

4

)

= 9/8.

Thus, for all n ≥ 4,

E
[
X(one counter)

]
− E

[
X(dynamic one counter)

]
≥ 1/8 > 0.

8. Two Stage Counting Protocol

8.1. Protocol. Observe that in the Single Counter Protocol, we will have long stretches
of time where the bulb is ON and we are waiting for the counter to enter the room. This
suggests that it maybe useful to have multiple alternative counters who are also authorized
to record the ON bulb and turn it OFF. Furthermore, it would be nice if we could count
faster to n. That is, rather than counting 1-by-1 to n, what if we counted in jumps of 10
instead?

The Two-Stage Counting Protocol improves on the Single Counter Protocol in both of
the aforementioned aspects. Firstly, it divvies up the task of counting the prisoners amongst
a group of assistant counters. Secondly, the head counter counts up to n more quickly by
collecting the aggregated counts of the assistant counters.

To begin the protocol’s description, there are three different possible roles for a prisoner:
head counter, assistant counter, and “drone”. There is exactly one head counter, and there
is some number of assistant counters a ≪ n, while the vast majority prisoners are still drones
– regular prisoner with no counting tasks. The head counter and all assistant counters all
have an integer variable in their heads, initialized to one.

The protocol has two stages, Stage I and Stage II. Each stage lasts for a certain number
of preset days, which we will call s1 and s2, respectively. In Stage I, each assistant counter is
responsible for counting a quota of q drones. In Stage II, the head counter will be responsible
for counting up the assistant counters who have reached their quota. In this way, the head
counter counts toward n in jumps of size q. If the head counter does not succeed by the end
of Stage II, then we repeat Stage I and Stage II again, still maintaining all the mental counts
from before. In other words, we repeatedly alternate between Stages I and II until victory
is declared. Notice that there were five parameters required by the protocol: n, a, q, s1, and
s2.
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Getting down to brass tacks, upon entering the interrogation room, each prisoner adheres
to the following instructions:

• During the first s1 − 1 days of Stage I:
– If you are a drone:

∗ If the bulb is OFF, and you have not turned it ON before, turn it ON.
∗ If the bulb is ON, do nothing.

– If you are an assistant counter:
∗ If the bulb is OFF, do nothing.
∗ If the bulb is ON, and you have not reached your quota yet, turn it OFF,

and increment your count.
– If you are the head counter: always do nothing.

• On the last day of Stage I:
– If you are a drone:

∗ If the bulb is OFF, do nothing.
∗ If the bulb is ON, turn it OFF, and plan to turn the bulb ON one extra

time in future invocations of Stage I.
– If you are an assistant counter:

∗ If the bulb is OFF, do nothing.
∗ If the bulb is ON, turn it OFF, and increment your count.

– If you are the head counter:
∗ If the bulb is OFF, do nothing.
∗ If the bulb is ON, turn it OFF, and plan to turn the bulb ON one extra

time in future invocations of Stage I.
• During the first s2 − 1 days of Stage II:

– If you are a drone: always do nothing.
– If you are an assistant counter:

∗ If the bulb is OFF, and you have reached your quota q and have not turned
it ON before, turn it ON.

∗ If the bulb is ON, do nothing.
– If you are the head counter:

∗ If the bulb is OFF, do nothing.
∗ If the bulb is ON, turn it OFF, and increment your count by q.
∗ If your count equals n, declare victory.

• On the last day of Stage II:
– If you are a drone:

∗ If light is ON, turn it OFF. Then in future invocations of Stage I, turn the
light ON q times.

∗ If light is OFF, do nothing.
– If you are an assistant counter:

∗ If light is ON, turn it OFF. Then in future invocations of Stage II, turn
the light ON once. (This task is in addition to the default task that each
assistant counter has. So this assistant counter may have to turn on the
light more than once in future Stage IIs.)

∗ If light is OFF, do nothing.
– If you are the head counter:
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∗ If the light is OFF, do nothing.
∗ If the light is ON, add q to count. If the count equals n, declare victory.

The algorithm is a little more complex than one might expect due to the care that must be
taken on the last days of Stages, to assure that “no light is left behind.” I am very indebted
to Hans van Ditmarsch for revealing many of these special cases to me.

8.2. Expected Runtime. The average runtime of this algorithm is difficult to compute,
and remains open for now. However, simulations with certain parameters for the case of
n = 100 yield runtimes between 3500 and 4000 days, or 9.5 to 11 years.

9. Binary Tokens Protocol

9.1. Protocol. The basic idea behind the two stage counting protocol was that to speed
things up, sometimes we should count in clumps rather than one-by-one. In the first stage,
assistant counters counted one-by-one, and the second stage, the master counter counted the
clumps collected by the assistant counters.

This same protocol can be thought of in terms of exchanging “tokens” with variable point
values. To make the analogy clear, imagine that all prisoners not assigned any counting
roles start with a token worth one point. During Stage 1, these prisoners try to deposit
their one-point tokens into the central room by turning on the bulb when they can, and
assistant counters collect the tokens. Suppose assistant counters are ordered to count up
to 10. Then in Stage 2, assistant counters exchange their collected tokens with 10-point
tokens, and try to deposit these 10-point tokens into the room by turning on the bulb when
they can. The master counter collects these bigger tokens. Thus, a lighted bulb represents a
different number of points depending on what stage we are in, and the prisoners can escape
more quickly by counting in terms of gradually higher denomination tokens.

The “binary tokens scheme” is a generalization of these ideas. The value of a lighted bulb
is doubled from stage to stage, and all prisoners now have the same role, allowed both to
deposit points and collect points. Proceeding formally, let n be the total number of prisoners,
and suppose n is a power of 2. Let Pk be the number of points a lighted bulb is worth on
day k. We will define it later, but for now, know that every Pk is a nonnegative power of 2.
All prisoners use the following instructions:

• Keep an integer in your head; call it T . Initialize it to T = 1.
• Let Tm denote the mth bit of T expressed in binary.
• Upon entering the room on day k, where Pk = 2m for some m, go through four steps:

(1) If the bulb is ON, set T := T + Pk−1, and turn it OFF.
(2) If T ≥ n, declare victory.
(3) If Tm = 1, turn the bulb ON, and set T := T − Pk.
(4) Else, if Tm = 0, leave the bulb OFF and do nothing.

Notice that Step 1 amounts to taking a token worth Pk−1 points left over from the previous
day, and Step 2 amounts to depositing a token worth Pk points. In short, all prisoners will
collect and deposit tokens whenever they may legally do so, where the value of tokens are
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universally dictated by a prespecified sequence Pk that is only a function of what day it is.
Whenever someone accumulates 100 points worth of tokens, the game is over.

It remains to specify what (Pk) should be. The sequence should start with a block of
consecutive ones, since everyone starts with only one point. If this block is long enough, there
will be many prisoners who have collect more than one point, and perhaps a subsequent block
of twos would be effective. For reasons that will become apparent in the coupon-collection
analysis presented in the following section, we choose the nondecreasing sequence

(Pk : k ∈ [1 : T ]) = ( 1, 1, . . . , 1
︸ ︷︷ ︸

n ln n+n ln lnn

, 2, 2, . . . , 2
︸ ︷︷ ︸

n ln n+n ln lnn

, 4, 4, . . . , 4
︸ ︷︷ ︸

n ln n+n ln lnn

, . . . ,
n

2
,
n

2
, . . . ,

n

2
︸ ︷︷ ︸

n ln n+n ln lnn

)

where T := log2 n(n ln n + n ln ln n), the length of the finite sequence on the right-hand side.
There are log2 n stages, each lasting n ln n + n ln ln n days (rounded). In the kth stage, the
bulb is worth 2k, where k indexes from 0 to (log2 n) − 1.

Lastly, if victory has not been declared after T days, the prisoners will maintain the
integers in their heads, and (Pk) restarts. That is, the full sequence (Pk) is T -periodic:

Pk := 2m where m :=

⌊
k (mod T )

n ln n + n ln ln n

⌋

.

9.2. Expected Runtime. The goal of this section is to prove that the average runtime of
the binary tokens protocol is

O(n(lnn)2).

To outline our approach, we will first show that the binary tokens protocol can be reduced
to a succession of coupon collector problems. (Recall the coupon collector problem: suppose
there are n different possible coupons, and each day we receive one of them uniformly at
random. The objective is then to collect all n coupons.) After having done so, we will modify
the proof of the following well-known result to suit our needs (see Appendix A):

Lemma 1. In a coupon collection problem with n coupons, after n ln n + cn draws, the

probability of not having seeing all the coupons is less than 1
ec .

Working through a simple example will illustrate why our problem is related to coupon
collection. Suppose we have n = 4 prisoners labeled A, B, C, and D. Stage 0, in which the
bulb is always worth 1 point, then lasts for ⌈n ln n + n ln ln n⌉ days. In the beginning, every
prisoner starts with one point, and the bulb is OFF. We can represent this initial state by
the table

Day 0:

OFF 21 20

A 0 1
B 0 1
C 0 1
D 0 1

where the bulb’s status is indicated in the upper left, and the integers being mentally main-
tained by each of the prisoners is listed in binary in the lower right. Let us play out the
following sequence of visitations in Stage 0: A, B, C, B, A, . . . , D.
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On Day 1, A is chosen. Following the protocol, A will turn the bulb ON and decrement
his number. The new state becomes:

End of Day 1:

ON 21 20

A 0 0
B 0 1
C 0 1
D 0 1

On Day 2, B is chosen. He sees the ON bulb, turns it off, and increments his count. He
then checks if the zeroth bit of his newly incremented count is a 1, but it is not, so he does
not activate the bulb. The new state is:

End of Day 2:

OFF 21 20

A 0 0
B 1 0
C 0 1
D 0 1

On Day 3, C is chosen. This leads to:

End of Day 3:

ON 21 20

A 0 0
B 1 0
C 0 0
D 0 1

On Day 4, suppose that B is chosen again. B sees the bulb, still worth 1 point, and turns it
OFF. He then increments his count to 2 + 1 = 3, which is 112 in binary. Then he sees that
the zeroth bit of his count so far is a 1, so he decrements his count back to 2, and turns the
bulb ON again. So within Day 4, we have

Start of Day 4:

OFF 21 20

A 0 0
B 1 1
C 0 0
D 0 1

−→ End of Day 4:

ON 21 20

A 0 0
B 1 0
C 0 0
D 0 1

which is the same state as the previous day. In short, choosing B again has no effect on the
system.

Now suppose that on Day 5, A (or equivalently, C) is chosen. The consequent behavior
will again be identical to that of B on Day 4. Any prisoner with a zeroed count will add and
then immediately subtract out whatever the bulb is worth on that day to his count, resulting
in no net state change. Thus, any prisoner whose count reaches zero can be thought of as
being inactive for the rest of this stage.
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Hence, we see that in the remaining days of Stage 0, no net state change will occur unless
D, the only person unchosen so far, is chosen, which would lead to the last state in Stage 0:

ON 21 20

A 0 0
B 1 0
C 0 0
D 0 1

−→

OFF 21 20

A 0 0
B 1 0
C 0 0
D 1 0

Notice all ones have been paired into groups of two. Stage 1 then proceeds much like Stage
0 did, except that now we increment/decrement starting with the left column of bits, and
the number of active prisoners has been halved from four to two. It is easy to see where this
binary pattern is going; at the start of Stage k, we should have combined all the 2k−1 tokens
into 2k tokens, and there should be only n/2k active prisoners left.

When does the protocol fail? Notice that if D is never chosen in Stage 0, he will never have
another chance to deposit his 1-point token into the room since the value of the bulb only
goes up in future stages. Thus, the only way the protocol could succeed in this cycle (going
through all stages once) is if D is the victory-declaring prisoner which collects all n points
in the end. In general though, if there are ever even just two prisoners who are not chosen
in a stage, this entire cycle is destined to fail. So, we can draw the following conclusion:

Up to a negligible fencepost error, the binary tokens protocol succeeds if and
only if in each stage, every active prisoner is chosen at least once, where the
number of active prisoners in Stage k is n/2k.

Thus each stage reduces to a coupon collection problem. In the kth stage, we collect n/2k

coupons (tokens), and we have n ln n+n ln ln n days to do it. Mimicking the proof of Lemma

1, if P
[

F
(k)
j

]

is the probability of failing to collect the jth coupon at the kth stage, where

j ∈ {1, . . . , n/2k}, then

P
[

F
(k)
j

]

=

(

1 − 1

n/2k

)n lnn+n ln ln n

=
(

e−2k

)ln n+ln ln n

as n → ∞

=
(
eln n+ln ln n

)−2k

= (n lnn)−2k

≤ 1

n ln n
.

Then, by invoking the union bound, P
[
F (k)

]
, the probability of the kth stage failing, is

P
[
F (k)

]
= P





n/2k

⋃

j=1

F
(k)
j



 ≤
n/2k

∑

j=1

P
[

F
(k)
j

]

≤ 1

2k

1

ln n
.
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Let F denote the event that one cycle of the protocol fails. Since the protocol fails if and
only if at least one of the log2 n stages fails, we can again invoke the union bound:

P [F ] = P





(log2 n)−1
⋃

k=0

F (k)



 ≤
(log2 n)−1
∑

k=0

P
[
F (k)

]
≤

(log2 n)−1
∑

k=0

1

2k

1

ln n
≤ 2

ln n
.

Let S denote the event that the first cycle of the protocol succeeds. Then

P [S] = 1 −P [F ] ≥ 1 − 2

lnn
.

If the first cycle fails, then we can upper bound the probability that the second pass fails
by the probability that the first cycle fails. This is true because the likelihood of success-
fully collecting all coupons at a given stage increases if some of these coupons were already
collected in a previous cycle, thereby allowing for more opportunities for the uncollected
coupons to be chosen. Thus, we can upper bound the expected number of cycles for the
protocol by

1

P [S]
≤ 1

1 − 2
lnn

−→ 1 as n → ∞.

Hence, since each cycle consists of log2 n stages, each of length n ln n + n ln ln n, the total
expected number of days till the prisoners get out is upper bounded by

(
1

1 − 2
ln n

)

(log2 n)(n lnn + n ln lnn) −→ O(n(lnn)2).

10. Conclusion

We have presented five different protocols for solving the 100 Prisoners and a Light Bulb
Riddle. The performance for each is summarized in Table 1, where n is the total number of
prisoners.

Table 1. Summary of Protocols

protocol closed-form average runtime asymptotic average runtime

i’m feeling lucky nn+1

n!
O(n1/2en)

one counter n2 − n + nHn−1 O(n2)

one counter dynamic n2 + n +
∑n

k=1
nk

nk k(Hn−k − k) ≤ O(n2−ǫ)
two stages n/a n/a

binary tokens n/a ≤ O(n(lnn)2)

In the future, we hope to present some lesser-known solution protocols developed in
[wu::forums] [3] which, to our knowledge, have not been presented in any literature to
date. We also hope to address how these protocols fare in variants of the 100 Prisoners and
a Light Bulb riddle.
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Appendix A. The Coupon Collector Problem

Suppose that there are n different possible coupons in the world, and each day we receive
one of them uniformly at random in mail. We are then naturally interested in the following
questions:

(1) What is the average number of days till we collect all n distinct coupons?
(2) Can we give a bound on the probability of collecting all coupons after m days?

To answer these questions, we first decompose the process into epochs. Let X be a random
variable representing the total number of days until we see all N coupons. Let Xi be the
number of days between first having seen i − 1 distinct coupons and first having i coupons.
Then Xi is a geometric random variable with parameter n−i+1

n
, and X =

∑n
i=1 Xi. The

expectation of X is then

E [X] =

n∑

i=1

E [Xi] =

n∑

i=1

n

n − i + 1
= n

n∑

i=1

1

i
= nHn ∼ n lnn.

One may notice that this analysis is identical to that of the one-counter protocol, which is a
coupon collection problem as well.

For the second question, we will use the union bound. Suppose A is the event that not all
coupons have been seen after m days have elapsed. Let Ai be the event that the ith coupon
has not been seen after m days. Then

P [Ai] =

(

1 − 1

n

)m

and applying the union bound,

P [A] = P [∪n
i=1Ai] ≤

n∑

i=1

P [Ai] =
n∑

i=1

(

1 − 1

n

)m

.

Suppose we set m = n ln n + cn for some c. Then

P [A] ≤
n∑

i=1

(

1 − 1

n

)n(ln n+c)

≤
n∑

i=1

(e−1)lnn+c

=

n∑

i=1

1

nec
=

1

ec
.

Thus the probability of failure after n ln n + cn days is less than 1
ec .
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Appendix B. Analysis For One Counter Protocol, With Non-Counters

Feeling Lucky

B.1. Expected Runtime Analysis. Let Zi denote the number of days between the ith
activation of the bulb and the counter tallying it. Since non-counters can only possibly
declare victory after the (n−1)th activation of the bulb, the maximum number of days that
the proposed improvement can save is precisely Zn−1, assuming that the lucky non-counter
witnesses the bulb the day immediately after it is turned ON for the last time. In terms of
expectation,

E
[
X(one counter)

]
− E

[
X(one counter, with non-counters feeling lucky)

]
≤ E [Zn−1] = n

so this improvement does not affect the average big-Oh runtime of O(n2) for the One Counter
Protocol.

B.2. Probability Analysis. We can also estimate the probability of a non-counter declar-
ing victory, which we will show to be very, very small. Let N be the event that a non-counter
declares victory, and let Ni be the event that the ith non-counter declares victory. Then

(13) P [N ] =
n−1⋃

i=1

Ni ≤
n−1∑

i=1

P [Ni] = (n − 1)P [N1] .

where we have used the union bound and the symmetry of the non-counters. Let W OFF
i

be the event that the first non-counter – whom henceforth we will simply refer to as the

non-counter – witnesses the ith OFF state of the bulb, and let W ON
i the event that the

non-counter witnesses the ith ON state of the bulb. (Note that P [U1] = 1 since we presume
that all prisoners know the bulb is initially OFF.) Then

P [N1] = P

[
n−1⋂

i=1

W OFF
i ∩ W ON

i

]

=

n−1∏

i=1

P
[
W OFF

i

]
P
[
W ON

i

]

where in the second equality, independence follows from the fact that the prisoners are always
chosen uniformly at random (u.a.r.). P

[
W ON

i

]
can be reworded as the probability that the

non-counter is selected u.a.r. during the time window when we are waiting for the counter to
turn off the bulb for the ith time. (Hence we chose the letter “W” to stand for “window”.)
This time window has random length Zi. Since all the Zi’s are identically distributed as
geom (1/n), P

[
W ON

i

]
= P

[
W ON

1

]
, and we may write

P [N1] = P
[
W ON

1

]
n−1∏

i=1

P
[
W OFF

i

]
.
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To compute P
[
W ON

1

]
, let V be the event that the non-counter arrives to see the ON bulb

before the counter does. Then

P
[
W ON

1

]
=

∞∑

z=1

P [Z1 = z]P [V |Z1 = z]

=

∞∑

z=2

P [Z1 = z]P [V |Z1 = z]

=
∞∑

z=2

(
n − 1

n

)k−1(
1

n

)

︸ ︷︷ ︸

P[Z1=z]

(

1 −
(

n − 2

n

)k−1
)

︸ ︷︷ ︸

P[V |Z1=z]

.

The second equality holds since if the counter arrives immediately after the bulb is switched
ON, there is no chance for the non-counter to arrive before the counter does. For the
third equality, the expression for P [Z1 = z] holds since Z1 ∼ geom (1/n). To compute
P [V |Z1 = z], the probability the non-counter arrives before the counter is the complement
of the probability that our particular non-counter is not selected in any of the days up to
the day the counter arrives. Using the formula for geometric series and simplifying, one can
show that

P
[
W ON

1

]
=

(
n − 1

n

)

−
(

1

n

)( n−1
n

· n−2
n

1 − n−1
n

· n−2
n

)

=
2(n − 1)

3n − 2
.

This expression is strictly increasing in n, and limn→∞
2(n−1)
3n−2

= 2/3. Thus,

(14) P [N1] ≤ 2/3

n−1∏

i=1

P
[
W OFF

i

]
.

We now compute P
[
W OFF

i

]
. Let Yi be the number of days between when the bulb is turned

OFF for the ith time and when the bulb is turned ON for the (i + 1)th time. Conditioning
on the value of Yi and doing a similar analysis,

P
[
W OFF

i

]
=

∞∑

y=1

P [Yi = y]P
[
W OFF

i |Yi = y
]

=

∞∑

y=2

(
i

n

)y−1(
n − i

n

)

︸ ︷︷ ︸

P[Yi=y]

P
[
W OFF

i |Yi = y
]

since Yi ∼ geom
(

n−i
n

)
. Computing P

[
W OFF

i |Yi = y
]

is more complicated, and requires
further conditioning. Note that there is a certain random order in which the n − 1 non-
counters turn the bulb ON. The non-counter thus has an index in this ordering, which we
denote by the random variable I. By symmetry, all orderings are equally likely, and thus
I is distributed uniformly over the discrete set {1, 2, . . . , n − 1}. Still holding the condition
that Yi = y, we now consider three cases:

(1) I ≤ i: The non-counter is one of the i non-counters already tallied. By considering

the complementary probability, P
[
W OFF

i |Yi = y, I ≤ i
]

= 1 −
(

i−1
n

)y−1
.
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(2) I = i + 1: The non-counter turns the bulb ON day y, thereby witnessing the bulb’s
OFF state right before he turns it ON. P

[
W OFF

i |Yi = y, I = i + 1
]

= 1.
(3) I ≥ i+2: The non-counter has not been tallied yet, and also will not be tallied on day

y. So he misses seeing the bulb in its OFF state. P
[
W OFF

i |Yi = y, I ≥ i + 2
]

= 0.

Combining these three cases, each occurring with probabilities i
n−1

, 1
n−1

, and n−i−2
n−1

, respec-
tively, we have

P
[
W OFF

i |Yi = y
]

= P [I ≤ i]P
[
W OFF

i |Yi = y, I ≤ i
]

+ P [I = i + 1]P
[
W OFF

i |Yi = y, I = i + 1
]

+ P [I ≥ i + 2]P
[
W OFF

i |Yi = y, I ≥ i + 2
]

=
i

n − 1
·
(

1 −
(

i − 1

n

)y−1
)

+
1

n − 1
· 1 +

n − i − 2

n − 1
· 0

=
i

n − 1
·
(

1 −
(

i − 1

n

)y−1
)

+
1

n − 1

and thus

P
[
W OFF

i

]
=

∞∑

y=2

(
i

n

)y−1(
n − i

n

)

︸ ︷︷ ︸

P[Yi=y]

P
[
W OFF

i |Yi = y
]

=
∞∑

y=2

(
i

n

)y−1(
n − i

n

)(

i

n − 1
·
(

1 −
(

i − 1

n

)y−1
)

+
1

n − 1

)

=
i ((i + 1)n2 − (i − 1)in − (i − 1)i)

(n − 1)n (n2 − i2 + i)

where the last equality follows after an orgy of algebra. Finally, plugging these results into
Equations 13 and 14,

P [N ] ≤ (n − 1)P [N1] ≤ (n − 1)
2

3

n−1∏

i=1

i ((i + 1)n2 − (i − 1)in − (i − 1)i)

(n − 1)n (n2 − i2 + i)
.

This could be rewritten in terms of Gamma functions, but we will not bother. Here is a
table of values which shows how quickly this upper bound on the probability of a non-counter
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declaring victory vanishes.

n Upper bound on P [N ]
2 2
3 2.41
4 1.28
5 0.451
6 0.123
7 0.0284
8 0.00578
9 0.00107
10 0.000183
15 1.30 × 10−8

20 4.58 × 10−13

25 1.10 × 10−17

50 7.17 × 10−42

75 8.78 × 10−67

100 5.47 × 10−92

1000 3.75 × 10−1019
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