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ABSTRACT
Full-text indexing of documents containing mathematics
cannot be considered a complete success unless the math-
ematics symbolism is extracted and represented in a stan-
dardized form permitting both searching for formulas, and
re-use of this information in (for example) computer algebra
systems. Most documents produced in the past and subse-
quently digitally encoded, and even most of those potentially
“born digital” in current journal production are—at best—
encoded in a printer form such as Adobe Postscript [1], in
which mathematics is not explicitly marked or easily identi-
fiable. While one might look forward in the future to other
document encodings such as MathML, the common journal
or textbook product is essentially without semantic content:
a jumble of odd characters. Sometimes it is just a jumble
of black and white dots! In this paper we demonstrate an
approach to decoding, to recognizing and extracting math-
ematical expressions, from a Postscript document. We can
produce a syntactic representation of the extracted expres-
sions which can then be used to generate various forms. For
example, if we extract TEX or Presentation MathML, we
can re-typeset the expression, but perhaps in a different size
or font family. More significantly, if we start from this pre-
sentation information, we can hope to combine it with ad-
ditional contextual processing of the surrounding text and
meta-data associated with the document, to assign seman-
tics, (e.g. content MathML), or provide versions in com-
puter algebra system languages such as Maple or Mathe-
matica. Finally, it is possible to use this material to present
audio or braille versions of mathematics for the visually dis-
abled. We have previously addressed some aspects of the
higher level of processing (parsing TEX for example). In
this paper we address the only first stage and concentrate
on what may seem to be overly simple, but is in fact diffi-
cult to do precisely: extracting the mathematics parts from
text.
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1. INTRODUCTION
It is common today to see complex documents on the in-

ternet posted as Postscript (PS) or Portable Document For-
mat (PDF). Sometimes there is additional information that
allows you to immediately extract the ASCII text for that
document, and other material including meta-data such as
title, author, creation date, etc. Sometimes (perhaps most
of the time) there is inadequate meta-data, stored with the
document. Short of printing the material on a page and hav-
ing a human analyze it, even determining the sequence of
words (for example in a multi-column document with foot-
notes and embedded figures) is not a trivial computational
task. Nevertheless, extracting this information is important
for indexing and search, as well as for access by visually
handicapped readers. It is possible to approximate the solu-
tions to these meta-data extraction problems for many con-
ventional paper and journal layouts. This is demonstrated
very effectively by NEC’s ResearchIndex project (formerly
CiteSeer, [10]). Consistent with their philosophy (and our
belief), the web site provides substantial online links to as-
sociated descriptive papers.

An alternative representation used for some newer doc-
uments as HTML or (better) XML goes further towards
a structured document in which presentation mathematics
can be represented, but the use of this representation for
new material, much less legacy, documents, is not common.
Thus the Postscript (or merely scanned OCR) equivalent
material is where we start.

The process of digesting material by NEC does not make
special efforts toward understanding mathematical formulas.
Either in-line or displayed, formulas are not “understood”
in any sense: if they are extracted at all they appear as



jumbled characters in odd sizes and fonts. While a human
can consider viewing the space on the page with these char-
acters by reviewing the companion display form of a page,
visually disabled readers or computer analysis cannot take
this alternative path. Therefore it would be handy to have
the formulas decoded into an indexable ASCII encoding of
the mathematics suitable for search, re-use, or even insertion
into a computation.

NEC’s project is not unique: other organizations dealing
with indexing of mathematics journals (for example JSTOR
[6]) face similar unsolved problems with legacy documents,
most of which are not solved by documents “born digital”
yet stored as PS, PDF, or similar appearance-based encod-
ings. A project headed by G. Michler [8] in Germany has
proceeded to work on digitization of legacy math documents,
and standards for communication have been set up based
on best current practices by the International Mathematics
Union [2].

2. WHY VIEW MATHEMATICAL
DOCUMENTS ONLINE?

The argument should be obvious to mathematical re-
searchers today. Historically, the research community used
conventional paper journal or proceedings publication as
a means of propagating findings, establishing priorities of
discovery, and (through refereeing), establishing a scholarly
reputation for authors. Today it appears that for many pur-
poses and for many scientific communities it is more effective
to have papers freely available in the journal/library on-
line repository, in an author’s individual repository, a non-
refereed collection such as ArXiv.org where authors submit
preprints, or allow papers to be indexed/copied over into an
archive of free papers such as NEC ResearchIndex.

A recent study [7] by Lawrence shows that the mean num-
ber of citations to an article that is freely available online is
7.03 as opposed to an offline article which has a mean num-
ber of citations of only 2.74, 2.6 times less (aside: in fact,
we found these statistics in a paper that was freely avail-
able online!). Lawrence’s research suggests that the ease
in accessing an online document as well as the availability
increases the readership of the article. An increase in the ef-
fectiveness of “data mining” of scientific articles can provide
a useful service to society [14].

The advantages for access, review, cross-reference, and es-
sentially all uses of published research benefit from on-line
internet availability [12]. The major downside appears to
be the loss of revenue for publishers. Secondarily, there is
(perhaps) a need to find a substitute for peer-review, some
process to certify the “correctness” of articles, essential when
publications are considered evidence for academic career ad-
vancement1.

Given this background, any improvement in technology
for encoding accuracy stands to benefit all related disci-
plines. At Berkeley, our digital library research activity
could use these encodings to improve the accuracy of the se-
mantic layer in Multivalent Documents (MVD) [13]. Math-
ematical expressions could be represented in some interme-
diate form: in some cases TEX is sufficient, but we prefer a
more semantically rich encoding. Options include the Lisp
form we initially produced (2001), or XML, MathML, Open-

1See for example the topic “Re-inventing Scholarly Informa-
tion Dissemination and Use” at http://elib.berkeley.edu

Math, or a command-string in a computer algebra system
language. Interpreters, or MVD “behaviors,” can be written
to convert the richer intermediate representations to those
that are more superficial (say, for printing). An alterna-
tive would be possible as a separate PDF layer for mathe-
matics, which we believe would have similar advantages to
the MVD representation, but would depend on proprietary
technology. Our best current hope for clear semantics is a
translation into an unambiguous utterance in a computer
algebra system from which the other forms can be derived.
Not all published mathematics can be managed in this way.

3. IMPROVING MATH ACCESS
To increase the ease of access and availability of a pa-

per online, the paper needs to be indexable and searchable.
With plain text and HTML documents, this is easily done
by most commercial search engines such as Google or Ex-
cite. However, complex documents such as those formatted
in Postscript, where the document is essentially stored as
a program whose execution on a stack-based interpreter re-
sults in a page image, provide much more of a challenge than
text. NEC’s ResearchIndex bridges much of this gap by pro-
cessing citations it finds in Postscript/PDF documents and
linking papers to each other through these citations, making
it easier to find and retrieve related journal and conference
papers. It is also of note that Google not only searches
through webpages, but is able to search through Postscript
and PDF documents on those webpages as well.

In a research context, being able to recognize and pro-
cess mathematical expressions from a scholarly document
can, at least in principle, try to identify similar mathemat-
ics in distinct domains; thus it might be possible to identify
previously unrecognized relations between threads in (say)
chemistry, commutative algebra, and biology. We say “in
principle” because we consider it unlikely that investigators
would, without prior knowledge of a field stumble on sub-
stantially identical notation. Nevertheless, there might be
new connections to find, for subsequent searchers.

If mathematics were contained on their own math seman-
tics layer in a MVD [13], researchers could cut and paste
mathematical expressions into a computer algebra system
saving time over hand-typing in the expressions, while also
avoiding the introduction of errors. Currently our MVD
math layer looks like Lisp, but existing programs can re-
render this so as to use on MathML or OpenMath.

We illustrate with a simple example. Searching for cita-
tions for G. N. Watson’s A Treatise on the Theory of Bessel

Functions, ResearchIndex returns 73 citations. Here is one
citation context2 , only slightly edited by inserting newlines.

.....0.002 0.0025 200 400 600 800 1000 k Figure 3.

Left: The standard Airy distribution.

Right: Observed frequencies of core sizes k 2

[20; 1000] in 50,000 random maps of size 2,000,

showing the bimodal character of the distribution.

variety of integral or power

series representations including (see [1, 45]) 1)

Ai(z) 1 2 Z 1 1 e i(zt t 3 =3) dt = 1 3 2=3 1 X

n=0 3 1=3 z n ( n 1) 3) n sin 2(n 1) 3 :

2a paper by Cyril Banderier and others, “Random Maps,
Coalescing Saddles, Singularity Analysis, and Airy Phenom-
ena,” Random Structures and Algorithms, 19 3-4, 194–246
(2001)



Equipped with this de nition, we present the main

character of the paper, a probability distribution

closely related to the Airy function. De nition 1.

The standard ....

Clearly, there are some problems here with the context,
and especially the representation of the mathematical ex-
pressions3. The user is not given very good information from
this citation. It would be far more useful and convenient to
the reader if this output could display the mathematical for-
mula in the document in a readily useful form. We see two
possible solutions, each first requiring that we find the place
on the page where recognition has problems:

1. Take a snapshot of the mathematical expressions (per-
haps as a GIF image file) from the document at that
location. Intersperse plain text and the snapshots of
the mathematical expressions for context. The solu-
tion also works for line art, graphs, half-tone photos,
and any other unsolved parts of the page image. Ref-
erence to the image is not helpful for visually disabled,
or for computer indexing.

2. Parse the mathematical expressions in the document
and return a pre-typeset version in some commonly
used format such as TEX or MathML.

The first solution presents only small technical difficul-
ties, as seen for example by the LATEX to HTML translators
that intersperse small images in a field of text. But it re-
duces many mathematics articles to essentially a sequence
of images, and none of the math content would be indexed
except those key names that might incidentally also appear
in text. In fact, given the nature of OCR, it is our experi-
ence that short intervening text segments are not recognized
accurately because conventional OCR programs are mislead
by what appears to be changes in base-line and character
size, and become far less accurate. In a worst case, the
document might be nothing more than a picture. More re-
alistically we would hope that some approximation of the
meta-data of article title, author, and some words in the
abstract would be recovered even from the most notation-
heavy document. Titles consisting solely of mathematical
symbols are unusual; one hopes that the recognized words
provide some key content.

We prefer the latter solution when possible: it provides a
much more flexible representation where we can apply some
semantic analysis to the returned expressions and even pass
it to a computer algebra system for processing. If we cannot

make sense of particular formulas, the first approach could

always be a fallback. In either case, it is necessary to detect

the mathematics in the document first.

In this particular case, extraction of the document image
shows two formulas in the middle of the citation:

Ai(z) =
1

2π

Z +∞

−∞

ei(zt+t3/3)dt

=
1

π32/3

∞
X

n=0

(31/3z)n Γ((n + 1)/3)

n!
sin

2(n + 1)π

3
.

3there is also a problem with ligatures, since “definition”
is rendered as “de nition”. The numbers along the top are
from a graph. The document seems also to have changed
since being indexed, since the reference to Watson’s treatise
is now citation 50, rather than 45!

Our goal is to encode these two forms in an internal format
that could be transformed to XML, MathML, or through the
intermediary of TEX shown below, the rendering above.

$${\mbox Ai}(z) = {1\over{2 \pi}}

\int _{-\infty}^{+\infty} e^{i(zt+t^3/3)}dt$$

$${}= {1 \over {\pi 3^{2/3}}}\sum_{n=0}^\infty

(3^{1/3}z)^n

{{\Gamma((n+1)/3)} \over {n!}}

\sin {{2(n+1)\pi}\over 3}$$

4. WHAT TO DO WITH MATHEMATICS
ONCE WE’VE DETECTED IT

An obvious target is a typesetting language such as TEX in
which the formulas are translated into the text strings that,
if processed through TEX would have the same appearance
as the formula. Figuring out the exact notation that was
used by an author to produce a TEX formula is not possible
in general, since there are many distinct utterances which
map to the same output. But for many formulas there is a
reasonably simple form that can be put together by merely
observing the positional relations of symbols. A similar ap-
proach might be to produce a MathML presentation form.
MathML is now “understood” by several browsers to the
point of making visual displays of appropriate size and po-
sition.

An important step further would be to find a correct se-
mantic encoding, say an expression in a computer algebra
system language like Maple or Mathematica, or perhaps an
encoding in content MathML.

5. DETECTING MATH IN POSTSCRIPT
Our technique is to use as much information as we have

about the glyphs, fonts, and positions to find mathematics in
a Postscript document using the heuristics described in Fate-
man [4]. In a TEX document, the regular font for typesetting
text paragraphs is often Times-Roman while mathematics is
typeset in a combination of Computer Modern Roman font
(CMR10 below) and Computer Modern Math Italic font
(CMMI10 below). Unfortunately, the FontInfo and Font-
Name fields, which provide us with these details, may not
survive the processing; they are optional in a Postscript font
dictionary. However, at the very least we can detect when
a new font is set and, further, we can assign a number to
each new unique font that has been defined, and use this
information to make a guess at when we are typesetting
mathematics.

To give an example of an optimal case, suppose we have
the following typeset expression f(x) = y which we process
into the following4:

f, type: text, font: CMMI10, bbox: (8555.47 ...)

(, type: 4, font: CMR10, bbox: (222.168 ...)

x, type: text, font: CMMI10, bbox: (555.474 ...)

), type: 4, font: CMR10, bbox: (1245.06 ...)

=, type: 1, font: CMR10, bbox: (333.36 ...)

y, type: text, font: CMMI10, bbox: (339.084 ...)

Each row begins with the character or string which was
detected in the Postscript document. Here we have used

4There are actually 4 numbers after bbox: which specify the
bounding box. We omit details due to space constraints.



the fact that TEX will typeset a function in the following
manner to detect math:

1. The function name is in Computer Modern Math
Italic.

2. The opening and closing parenthesis are typeset in
Computer Modern Roman.

3. The simple arguments of the function are typeset in
Computer Modern Math Italic.

In a tougher version of the same information we may have
the following:

f, type: text, font: 1, bbox: (8555.47 ...)

(, type: 4, font: 2, bbox: (222.168 ...)

x, type: text, font: 1, bbox: (555.474 ...)

), type: 4, font: 2, bbox: (1245.06 ...)

=, type: 1, font: 2, bbox: (333.36 ...)

y, type: text, font: 1, bbox: (339.084 ...)

Here, the font names are not present and we will need to
make guesses based on the font changes and fontnumbers as
to which expressions are mathematics and which are plain
text.

6. IMPLEMENTATION
Imagine we have found a document on the internet that is

of some interest, perhaps following in the footsteps of NEC.
Or that we have found the document BECAUSE of NEC’s
citation, but we wish to index it better.

Our initial processing of the Postscript document is done
by a modified version of Prescript [11], a program which
modifies operators of the Ghostscript interpreter to output
various information about strings and bounding box infor-
mation about the typeset expressions. In our program, we
are especially concerned with a small subset of Postscript
operators. A short explanation of what each operator (that
we are concerned with) does in Postscript followed what we
augment the operator to provide follows:

• show, kshow, widthshow, ashow, awidthshow - Op-
erators that paint the glyphs on the canvas. These are
used to capture information such as the bounding box
and the baseline.

• showpage - Prints a page to the output device. Used
to determine when we have a new page.

• setfont - Changes the current font being used (may
also define a new font in the process). Used to fig-
ure out font names (i.e. the fontname field), when the
current font changes, and the bounding box for var-
ious characters of the font to aid in computation of
clumping (discussed later). For a good representative
mix of different bounding boxes, the following letters
are used: X, a, t, x, p, d, l, m, n.

• rlineto, lineto, fill, stroke - The first two op-
erators, rlineto and lineto, define lines to be drawn.
fill fills in a current region with the current color.
The last operator, stroke performs the actual draw-
ing. These operators are captured to find divide bars
which are rendered as filled rectangles using these op-
erators.

• moveto - Changes the current point on the canvas.

• scale - Scales the coordinates that the document is
defined in.

• translate - Translates the origin horizontally and/or
vertically.

For example, from the expression a+bc

de
, the modified

Postscript interpreter will return:

#S(command :type scale :x 0.009 :y -0.009)

#S(command :type translate :x 8000 :y -80000.0)

#S(command :type moveto :x 0 :y 0)

#S(command :type moveto :x 6401 :y 6783)

#S(command :type setfont :x 1 :y (1134 1000))

#S(box :font CMMI8 :fontnumber (1)

:baseline 6782.99 :intlist (97 )

:y1 6777.81 :x1 6873.02 :y0 6436.77 :x0 6444.42)

#S(command :type setfont :x 2 :y (1106 1000))

#S(box :font CMR8 :fontnumber (2)

:baseline 6782.99 :intlist (43 )

:y1 6888.86 :x1 7579.29 :y0 6222.22 :x0 6953.21)

#S(command :type setfont :x 1)

#S(box :font CMMI8 :fontnumber (1)

:baseline 6782.99 :intlist (98 )

:y1 6777.83 :x1 8000.05 :y0 6172.82 :x0 7666.69)

#S(command :type moveto :x 8036 :y 6470)

#S(command :type setfont :x 3 :y (1230 1000))

#S(box :font CMMI6 :fontnumber (3)

:baseline 6470.0 :intlist (99 )

:y1 6444.42 :x1 8444.42 :y0 6212.32 :x0 8110.43)

#S(command :type moveto :x 6444.44 :y 7000.0)

#S(command :type rlineto :x 2061 :y 0)

#S(command :type rlineto :x 0 :y -45)

#S(command :type rlineto :x -2061 :y 0)

#S(command :type fill :x 6444.44 :y 6955.02)

#S(command :type moveto :x 6971 :y 7764)

#S(command :type setfont :x 1)

#S(box :font CMMI8 :fontnumber (1)

:baseline 7764.0 :intlist (100 101 )

:y1 7777.83 :x1 7889.76 :y0 7112.01 :x0 7000.0)

From this output, initial processing will proceed through
these steps:

1. Basic word assembly. In Postscript, strings are
sometimes broken up into fragments so they can be
typeset better. To handle this, we use the same heuris-
tic [3] as pstotext and prescript to assemble the
string fragments into words, that is,

...strings separated by a distance of less than
0.3 times the minimum of the average char-
acter widths in the two strings are considered
to be part of the same word.

We make one modification to their algorithm in that
we require that the fonts of the two string fragments
being combined have the same font.

2. Determine types. Determine the type of all objects
(from the “Pass one: initial separation” heuristics dis-
cussed in Fateman [5]). That is, we are looking for
items that may be part of mathematical expressions.
These include:



• open parenthesis/brackets that are followed im-
mediately by close parenthesis/brackets, i.e. “()”
or “[]”

• mathematical characters such as +, =, and Greek
symbols

• characters that are in italics or bold (e.g. Times-
Italic, Times-Bold, CMMI family of fonts)

• numeric digits in Roman typefaces (e.g. Times-
Roman, CMR family of fonts)

• words that occur commonly in mathematics such
as cos, sin, or tan; constants in physics such as J,
K, W, or E that are typeset in Times-Roman

• punctuation such as periods, commas, colons, and
semicolons

3. Assemble structures. Pattern match certain groups
of commands to find glyphs that are created by mul-
tiple commands, for example: square roots, integral
signs, and (in our example) horizontal lines:

#S(command :type moveto :x 6444.44 :y 7000.0)

#S(command :type rlineto :x 2061 :y 0)

#S(command :type rlineto :x 0 :y -45)

#S(command :type rlineto :x -2061 :y 0)

#S(command :type fill :x 6444.44 :y 6955.02)

Although our program faces some of the difficulties of op-
tical character recognition (OCR) programs (more properly
“document image analysis”), some components are much
easier. Consider the task of determining the meaning of
horizontal lines; during the initial processing of an OCR
program, the horizontal lines could be one of many different
things such as a divide bar, a subtraction sign, or, perhaps,
part on an equal sign. In a Postscript document, however,
the latter two are encoded in a string and have been sepa-
rated out during the preprocess phase. Therefore such tasks
as determining the meaning of a horizontal line are easier.

The result of our processing is as follows:

a, type: text, font: CMMI8, bbox: (6444.42 ...)

+, type: 1, font: CMR8, bbox: (6953.21 ...)

b, type: text, font: CMMI8, bbox: (7666.69 ...)

c, type: text, font: CMMI6, bbox: (8110.43 ...)

hline, type: hline, font: nil, bbox: (6354.48 ...)

de, type: text, font: CMMI8, bbox: (7000.0 ...)

The processed data is then stable-sorted vertically, then
horizontally via the bounding box information of each item.
The result is a list of elements that are ordered by their
left-most horizontal position, with ties favoring text that is
higher up in the page. This aids in the clumping part of the
program where we create box structures of the recognized
math. The sorted version of the example expression is below:

hline, type: hline, font: nil, bbox: (6354.48 ...)

a, type: text, font: CMMI8, bbox: (6444.42 ...)

+, type: 1, font: CMR8, bbox: (6953.21 ...)

de, type: text, font: CMMI8, bbox: (7000.0 ...)

b, type: text, font: CMMI8, bbox: (7666.69 ...)

c, type: text, font: CMMI6, bbox: (8110.43 ...)

1, type: text, font: CMR12, bbox: (25698.9 ...)

From the sorted data, we apply the clumping heuristics
based on the Math/OCR programs used by Fateman [5]:

We use a computation based only on bounding
boxes. It is a kind of iterative smearing where
all bounding boxes horizontally within a chosen
x-smear distance are merged repeatedly until the
process ceases to make any changes. Then a simi-
lar y direction merging is done. Setting these pa-
rameters is tricky. The x-smear should be larger
than the inter-character space but smaller than
the inter-word space. The y-smear is especially
tricky since it must be considerably smaller than
the inter-line space yet large enough to grab all
the parts of a built-up fraction or even a multiple-
line display.

From the clumping heuristic, we obtain the following
built-up expression, as a Lisp data structure:

(vbox (hbox a + (superbox b c)) hline de)

One of the problems we had with building up expres-
sions is that some programs that generate Postscript files
will modify the user coordinate space of the document. We
cannot assume that the units in the Postscript document in
question are the standard point (1/72 inch). This can be
remedied by seeing what changes are made to the current
transformation matrix in the graphics state of the Postscript
document. Calls to operators such as translate, rotate,
scale, and concat need to be tracked and accounted for in
the calculations for building up expressions (e.g. how many
“units to the right” should I look for the next lexeme).

As a check, the built up expression can be run through
a simple recursive printer to generate the final typesetting
commands to typeset the expression:

$a + b ^ c \over de $

which is typeset into: a+bc

de
, our original expression!

It may seem that in this paper we have avoided discussing
the “interesting” part, which is the parsing of 2-D mathe-
matical expressions. In fact this ground is well-worn. Its
successes and limitations, as well as our current implemen-
tation are discussed at length in our earlier paper [5]. The
success of this program is substantially improved if there are
no errors in identification of glyphs, font sizes and positions.
This is an unwarranted assumption in the “OCR” world but
it is precisely the situation for our current program. Process-
ing Postscript bypasses the error-prone scanning of printed
paper, (or worse, handwritten input of mathematics). We
feel compelled to note once again that mathematical nota-
tions do not represent a solution as much as a starting point.
Even a skilled mathematician, applying considerable effort
and patience, may fail to understand a mathematical paper.

7. FURTHER WORK TO BE DONE
The current prototype of the system works for Postscript

documents generated by LATEX and dvips. There are
many other programs that generate Postscript document
(for example, Acrobat Distiller or pdf2ps) and additional
work may be needed so that the system can best process
Postscript documents created by these other programs.

The current program also requires the fontname fields of
the fonts used in the Postscript documents to be present (as
given in the “optimal” case document). Additional heuris-
tics (or programs written in Postscript) must be devised in
the case where fonts are not given.



In principle there is no difficulty in finding test sets.
For example, there are hundreds of thousands of possible

test cases available from digital library collections such as
the NEC Research Index. We have corresponded with the
NEC project scientists, and hope to be able to augment
their indexing capabilities. We have found that, since PDF
can be produced by a large number of programs, and our
tools are mostly oriented toward documents originally in
TEX, they need more tuning (To determine from a Postscript
document “what kind of source text generated you?”) before
we attempt a large test. There is also a rather substantial
problem, if we have a large benchmark, of determining “is
this result correct?” Without the original TEX, we have
no automated “ground-truth” detection. Our own limited
tests starting from TEX and attempting to reconstruct the
original TEX suggest that the concept is reasonable but that
high quality requires grueling engineering attention to detail,
and incremental augmentation of the reconstruction phase
[5].

Interestingly, NEC is processing new documents that are
available in Postscript by essentially printing them out (vir-
tually) and re-recognizing them with “OCR” or document
understanding systems. The advantage to this is that the
OCR programs have been refined (really, hacked endlessly)
over more than a decade to try to deduce meta-data and lay-
out information (paragraph ordering on multi-column pages,
titles, page numbers, etc.) in a far more sophisticated fash-
ion than is plausible ab initio on “raw” Postscript, using a
simple program like pstotext. Thus NEC can build upon
the years of engineering heuristic development in the OCR
business instead of reduplicating it on the raw Postscript.

The OCR of mathematical formulas is unfortunately not
seen as a commercially important task and thus the OCR
programs do not solve our problem particularly well. In
fact, reducing the problem to OCR of math is a reduction
to a previous well known and partially solved problem. As
noted, the decoding of Postscript at least gives us 100% of
the characters and locations, presuming that we can figure
out the font situation.

8. CONCLUSIONS
Searching for some semantic meaning to Postscript math

is a challenging task, and like the similar task of optical
character recognition (OCR), one that we will not solve per-
fectly5. Of course humans have difficulty reading (or writ-
ing) correct mathematics, and there is nothing to prevent
one from typesetting nonsense — even ill-formed nonsense
— in TEX.

Even though our problem statement seems more con-
strained in scope than full OCR: we are given the glyphs, po-
sitions, and (probable) fonts, there still numerous difficulties
that prevent us from truly “understanding” mathematics on
a page.

There is an underlying question here of how math docu-
ments should be encoded, and one that is central to the com-
puter algebra systems building community. The increased
interest in web-based documentation, tutorials, and ad-
vanced notebook-like interfaces for interactive CAS, all point

5Of course, it usually doesn’t pay to reduce a problem to a
harder one: as just mentioned, if the OCR of printed math
were to be perfected, the reduction for our problem would
work!

to the important relationship that must be recognized be-
tween mathematics, documents and computation. This is in
part recognized by Design Science, a company which has re-
ceived (Dec, 2003) NSF funding to make web-based math ac-
cessible for visually disabled. (http://www.dessci.com/en/).
It appears that they hope to do this by building MathML
tools. Unfortunately a survey they conducted using Google,
in September, 2003, on a few terms like “factoring polynomi-
als” shows that out of hundreds of pages retrieved, not one
uses MathML. Rather they use HTML, PDF, etc. [9] Thus
tools like ours, translating from documents to math, may be
critical to making math accessible. We have shown an ap-
proach in principle, but an industrial strength engineering
solution is needed if it is to be widely applied.

It is not likely that people will go back and encode, by
hand, legacy web mathematics pages. For new documents,
the role of the author and editor of a mathematical journal
article could be expanded beyond that of merely supplying
and proof-reading camera-ready or computer-ready TEX. In
the future we hope that authors, who have become used to
typesetting in the publication process, will be encouraged to
include MathML or another semantic encoding of their writ-
ing (instead of, or in addition to, TEX or other presentation
style source). An outright requirement of such an encoding
is unreasonable, since the formal inclusion of new results into
the existing formal structure of (say) OpenMath is a sub-
stantial and potentially tedious and distracting effort. Once
such an encoding is provided, we hope that the publication
process will maintain this encoding instead of obscuring it
through the production of page proofs and printed pages de-
void of their digital origins. The value of such a preservation
would seem obvious, but apparently has not been realized
by those publishers (including ACM) who publish their on-
line journals as page images, removing the TEX, MathML,
or other source encoding.
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10. APPENDIX: USING THE PROGRAMS
This section gives a quick overview on how to use the

Postscript mathematical expression locating/extraction sys-
tem. We have tested the system using the following pro-
grams on a Sun/ Solaris platform:

• Aladdin Ghostscript 6.0

• Allegro Common Lisp 6.0

• LATEXWeb2C 7.3.1

• dvips 5.86

10.1 Preprocess
The processing begins with a Postscript document. For

experiments it is convenient to create a document starting
with TEX so the result can be compared with the original
document. In the Preprocess step, a sample TEX document
is converted to a dvi file via LATEX or a related program and



then to Postscript via dvips. The commands that we ran
were:

latex file.tex

dvips -Ppdf file.dvi

which produced a Postscript file called file.ps. The
Postscript document is run through a modified version of
Ghostscript, a common Postscript interpreter available on
many different platforms. The modifications to Ghostscript
are achieved by simply adding a prolog (mlypre.ps) and
epilog (mlypre2.ps) to the main Postscript document as it
is run through the interpreter. The modifications generate
output that includes the bounding boxes, currentpoints of
each string (which we are taking as the baselines for most
text), the font (if it exists), and the string itself, which in
our case we change to integer representation of each of the
individual characters. This transformation is done to ad-
dress issues of portability in the next phase. In addition,
commands such as rlineto, moveto, and stroke are also
outputted for further analysis.

The following command does the initial processing:

gs -q -dNODISPLAY -soutfile=output mlypre.ps

psfile mlypre2.ps quit.ps

where output is the destination file and psfile is the source
Postscript document that needs to be examined.

The output generated is a text file that constitutes defi-
nitions of a series of Lisp lists with structures (i.e. box and
command) as its elements. boxs are structures for strings that
have been found and commands are structures for Postscript
commands such as moveto or rlineto. The variable pages

tells how many pages were processed from the Postscript
document. Each list is named page[N] where N is a integer
such that 0 < N <= pages.

10.2 Process
The data from the preprocess phase is then processed

by the Lisp programs pass1 and pass2 which implement
phase 1 and phase 2, respectively, of three phase algorithm
described by Fateman [4]. This can be done by loading
util.cl into Lisp and calling (process page[N]). These
programs are rudimentary in various respects, having been
written to recognize formulas occurring in integral tables.
The programs do not effectively handle matrices, for exam-
ple.

To view the actual bounding boxes and baselines on the
Postscript document in question, ps-draw can be run on
the output of (process page[N]) to generate the necessary
Postscript commands to draw the boxes. We currently do
not have an automated way of displaying the boxes in the
page, but the commands can be cut and pasted into the
Postscript file directly on the page in question, just before
the showpage operator (n.b. most of the time, Postscript
documents have common Postscript commands aliased at
the beginning of the document for efficiency issues. There-
fore, you may not see an explicit showpage command; for
example, latex uses eop.

10.3 Typesetting
To output TEX commands from the built-up expression

generated by process, run the Lisp program typeset. Ide-
ally this would reproduce the typesetting command for the
formula, but at best one can expect is one of the (many)

possible forms that will produce the formula or an approxi-
mation of it.
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