
 
 
 
 
 
 
 
 

Economics 240B: Econometrics 
Recitation Notes 

 
 

Jeffrey Greenbaum 
University of California, Berkeley 

 
 
This document contains my teaching notes for Graduate Econometrics: Econ 240B.  The instructor for 
course was James Powell.  Carolina Caetano also led some of the recitations, and greatly inspired and 
provided significant input for the content and pedagogy of my recitations.   
 
Econ 240B is the second semester of the core graduate sequence in econometrics at Berkeley.  Econ 
240A concludes with deriving the Gauss-Markov Theorem, and 240B discusses the implications of 
relaxing each assumption.  Topics include asymptotics, time series, generalized least squares, 
seemingly unrelated regressions, heteroskedasticity and serial correlation, panel data, and instrumental 
variables estimation.  Additional themes not covered in my sections include maximum likelihood 
estimation and inferences for nonlinear statistical models as well as generalized method of moments 
estimation and inference.  Specific topics include discrete dependent variables, censoring, and 
truncation.   
 
The material draws upon Paul Ruud’s An Introduction to Classical Econometric Theory, and is 
supplemented with Arthur Goldberger’s A Course in Econometrics and William Greene’s Econometric 
Analysis.   



GLS and SUR

Jeffrey Greenbaum

February 16, 2007

Contents
1 Section Preamble 1

2 GLS 3
2.1 The GLS Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Relative Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 2004 Exam, Question 1A . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.2 Relative Efficiency of GLS to OLS . . . . . . . . . . . . . . . . . . . . . 7
2.3.3 2004 Exam, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Robust OLS Estimation 10
3.1 OLS Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Feasible GLS Alternatives: SUR 11
4.1 Motivation and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 SUR Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3.1 Goldberger 30.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3.2 Goldberger 30.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.3 Goldberger 30.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 Section Preamble
In the next few sections we relax the spherical covariance matrix assumption – V ar(ε|X) = σ2I ,
or equivalently V ar(y|X) = σ2I .

Recall from 240A that this assumption means that the errors are:
1. Homoskedastic – all of the errors have variance σ2: V ar(εi|xi) = σ2 ∀i. This property corre-
sponds with equal values along the main diagonal of V ar(ε|X). It is implied when assuming that
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the errors are identically distributed with finite second moments. We now allow for heteroskedastic
errors whose variances usually vary with the observed regressors: V ar(εi|xi) = σ2(xi).

2. Not Serially Correlated – none of the factors unobserved to the econometrician are correlated
across individuals: Cov(εi, εj|xi, xj) = 0 ∀i 6= j. This property corresponds with the off-diagonal
elements of the covariance matrix being zero. It is implied when assuming that the errors are
independently distributed.

We now allow the covariance matrix to be of the general form: V ar(y|X) = Σ = σ2Ω, and require
that it retains its statistical properties of being nonsingular, positive definte, and symmetric. We
continue to assume that we know all of the elements of Σ, in which we had previously assumed it
to be the specific case of σ2I with σ2 known and unique. σ2 is no longer unique but its value does
not affect our results.

We retain all of the other classical regression assumptions of linear expectations, nonstochastic
regressors, and full rank regressors, and call this model the generalized classical regression model.
If the regressors are not nonstochastic then we can obtain equivalent calculations for most of what
we do in this part of 240B by conditioning on them. In fact nonstochastic regressors are rare in
economics because most empirical work is based on nonexperimental data rather than controlled
experiments. For these reasons we will generally work in terms of the conditional.

As usual we ask the two questions related to relaxing an assumption:

1. Where did we use this assumption? What changes without it?

In 240A we used the error vector’s covariance matrix to compute V ar(β̂OLS|X). In proving the
Gauss-Markov Theorem, we showed that the spherical covariance matrix assumption makes β̂OLS
the most efficient estimator of β among the class of linear unbiased estimators. Without this as-
sumption V ar(β̂OLS|X) can change and β̂OLS is no longer always the most efficient linear un-
biased estimator. Moreover it is no longer obvious how to consistently estimate V ar(β̂OLS|X),
which is important for statistical inference. β̂OLS remains consistent and unbiased however, be-
cause these two properties are affected only by the errors’ first moment.

2. How can we remedy these problems?

i) OLS. Despite these two concerns we can still proceed with OLS because a series of advances in
the 1980s introduced robust estimation procedures that correct the standard errors so that they are
estimated consistently. There are different correction procedures based on whether we believe Ω
suffers from just heteroskedasticity, or serial correlation as well. What is meant by robust is that
these procedures result in consistent estimators without having to make any structurally parametric
assumptions, such as the way in which the errors are heteroskedastic by specifying the form of
σ2(xi). We will devote more attention to these robust procedures next week.

Most of the empirical literature proceeds in this direction because we have a reasonable solution
for inference, which is the only concrete problem that arises when transitioning to this generalized
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framework. The loss of efficiency with OLS and the amount of error introduced by using robust
standard errors is negligible in sufficiently large samples. In fact some econometric research has
been devoted to adjusting these robust standard errors to improve the accuracy of small sample
inference. We prefer to use OLS when we can do so because it is a straightforward estimator to
interpret, and in this model β̂OLS remains unbiased and consistent.

ii) GLS. The alternative to proceeding with OLS is to compute Aitken’s Generalized Least Squares
estimator because it is BLUE. Unfortunately we cannot compute β̂GLS unless we know all of the
elements of Ω because β̂GLS is a function of Ω. That is a problem in practice because Ω is based
on information about random variables that the econometrician does not observe unlike X or y.
Yet if we can estimate Ω consistently then we can use Ω̂ to construct a feasible estimator that is
asymptotically equivalent to β̂GLS . Estimating Ω consisently however, is not simple because it has
more elements than data points. We can reduce this dimensionality concern by making assumptions
about the structure of Ω, and we will devote the next few sections to this objective.

GLS appears much less frequently in the empirical literature than OLS because we rarely have
reason to believe we know Ω. Similarly Feasible GLS (FGLS) is not widely used because the
structural assumptions can be difficult to motivate. However when they can be, FGLS tends to be
used as an interesting robustness check to OLS.

2 GLS
In this section we derive β̂GLS and prove that it is BLUE in the generalized regression model.
Recall that we assume to know all of the elements of Σ. We proceed with Ω in our notation to
resemble the classical model, which is a special case of the generalized model where Ω = I .

2.1 The GLS Estimator
We derive β̂GLS by transforming the generalized classical regression model and computing its
least squares estimate. If this transformed model satisifes the Gauss-Markov assumptions then we
know that β̂GLS is BLUE. Because Ω is positive definite, there exists a nonsingular Ω1/2 such that
Ω = Ω1/2Ω1/2′ , and we can choose Ω1/2 such that Ω = Ω1/2′Ω1/2.

In this subsection we transform the generalized regression model by multiplying y = Xβ + ε
through by Ω−1/2, which exists because Ω is nonsingular. We confirm that this model satisfies
the classical linear regression assumptions so we can apply the Gauss-Markov Theorem. In the
subsequent subsection we show that we make this specific transformation because no other linear
unbiased estimator for β can be more efficient.

Accordingly the transformed model is:

Ω−1/2y = Ω−1/2Xβ + Ω−1/2ε

Full Rank Regressors -
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We still assume that rank(X) = K. As Ruud proves on p.855, it follows that rank(Ω−1/2X) = K
because Ω−1/2 is nonsingular.

Nonstochastic Regressors -
We still assume that X is nonstochastic. Ω−1/2X is nonstochastic because Ω−1/2 is assumed to
be known. Note that if we were to relax the nonstochastic assumption that we could condition on
either X or Ω−1/2X because they contain the same information about the design matrix, X .

Linear Expectation -
We still assume that E(ε|X) = 0:

E(Ω−1/2ε|Ω−1/2X) = E(Ω−1/2ε|X)

= Ω−1/2E(ε|X)

= Ω−1/20

= 0

Spherical Covariance Matrix -
We now allow for a generalized covariance matrix: V ar(ε|X) = σ2Ω = σ2Ω1/2Ω1/2′:

V ar(Ω−1/2ε|Ω−1/2X) = V ar(Ω−1/2ε|X)

= Ω−1/2V ar(ε|X)Ω−1/2′

= Ω−1/2(σ2Ω1/2Ω1/2′)Ω−1/2′

= σ2I

Therefore the least squares estimate of this model is BLUE by the Gauss-Markov Theorem:

β̂GLS = ((Ω−1/2X)′(Ω−1/2X))−1(Ω−1/2X)′(Ω−1/2y)

= (X ′Ω−1/2′Ω−1/2X)−1X ′Ω−1/2′Ω−1/2y

= (X ′Ω−1X)−1X ′Ω−1y

Note that β̂GLS = β̂OLS if V ar(y|X) = σ2I as expected from substitution of I into the model.

2.2 Relative Efficiency
We confirm that no other linear unbiased estimator of β is more efficient than β̂GLS in the gener-
alized model. This confirmation validates that the specific transformation we made by multiplying
through by Ω−1/2 produces a least squares estimator that is BLUE for this model. The proof is very
similar to the proof of the Gauss-Markov Theorem for β̂OLS .
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β̂GLS is BLUE for any non-singular Ω if it is relatively efficient to any other linear unbiased esti-
mate of β, which we denote as β̃.

Recall that β̂GLS is efficient relative to β̃ if and only if:

V ar(β̃|X)− V ar(β̂GLS|X) is positive semi-definite

We first confirm that β̂GLS is linear in y and is an unbiased estimator of β.
1. Let A = (X ′Ω−1X)−1X ′Ω−1. β̂GLS = Ay is linear in y because A is nonstochastic.
2. β̂GLS is unbiased:

E(β̂GLS|X) = E((X ′Ω−1X)−1X ′Ω−1y|X)

= (X ′Ω−1X)−1X ′Ω−1E(y|X)

= (X ′Ω−1X)−1X ′Ω−1Xβ = β

β̃ is a linear in y and unbiased estimator of β if:
1. β̃ = Ay for some KXN nonstochastic matrix A that is not a function of y.
2. E(β̃|X) = β.

Combining these two statements:

E(β̃|X) = β ⇐⇒ E(Ay|X) = β

⇐⇒ AE(y|X) = β

⇐⇒ AXβ = β

⇐⇒ AX = I and X ′A′ = I ′ = I

We now take the conditional variance of both estimators to evaluate the relative efficiency claim:

V ar(β̂GLS|X) = V ar((X ′Ω−1X)−1X ′Ω−1y|X)

= ((X ′Ω−1X)−1X ′Ω−1)V ar(y|X)(X ′Ω−1X)−1X ′Ω−1)′

= ((X ′Ω−1X)−1X ′Ω−1)(σ2Ω)(Ω−1X(X ′Ω−1X)−1)

= σ2(X ′Ω−1X)−1X ′Ω−1X(X ′Ω−1X)−1

= σ2(X ′Ω−1X)−1

V ar(β̃|X) = V ar(Ay|X) = AV ar(y|X)A′ = σ2AΩA′

We thus want to show whether σ2(AΩA′)− σ2(X ′Ω−1X)−1 is positive semi-definite. σ2 > 0 so it
is equivalent to factor it out and check whether AΩA′ − (X ′Ω−1X)−1 is positive semi-definite.

We prove that this difference is positive semi-definite by making use of the property:

For any A and B that are invertible, A − B is positive semi-definite if and only if B−1 − A−1 is
positive semi-definite (Amemiya, p. 461, Property 17).

5



We use this property and check whether X ′Ω−1X − (AΩA′)−1 is positive semi-definite:

X ′Ω−1X − (AΩA′)−1 = X ′Ω−1/2′Ω−1/2X − (AΩ1/2′Ω1/2A′)−1

= X ′Ω−1/2′Ω−1/2X −X ′A′(AΩ1/2′Ω1/2A′)−1AX

= X ′Ω−1/2′IΩ−1/2X −X ′Ω−1/2′Ω1/2A′(AΩ1/2′Ω1/2A′)−1AΩ1/2′Ω−1/2X

= X ′Ω−1/2′(I − Ω1/2A′(AΩ1/2′Ω1/2A′)−1AΩ1/2′)Ω−1/2X

= Z ′(I −W (W ′W )−1W ′)Z

= Z ′(I − P )Z

where Z = Ω−1/2X , W = Ω1/2A′, and I − P is the projection onto Col(Ω1/2A′)⊥. Recall that we
previously derived that X ′A′ = I = AX as used in the second equality.

Recall that projection matrices are idempotent and symmetric, and the identity minus a projection
matrix is also a projection matrix:

Z ′(I − P )Z = Z ′(I − P )(I − P )Z

= Z ′(I − P )′(I − P )Z

= ((I − P )Z)′((I − P )Z)

= ‖(I − P )Z‖

This norm must have a nonnegative length. Therefore Z ′(I − P )Z must be positive semi-definite.

2.3 Exercises
Professor Powell has used versions of questions from Goldberger in previous exams in the True/False
section, especially those pertaining to the topics in GLS that we will cover this week and next. The
first question in this section comes from Professor Powell’s exam in 2004, which is in the spirit of
Goldberger 27.1 The second reviews the derivation that β̂GLS is BLUE in the generalized model
and is meant to be instructive. It is a good example of how intuition can be used answer the question
correctly and earn a lot of the credit before doing any of the math. In the third question we de-
rive an asymptotic test statistic in the context of the generalized regression model and FGLS. This
question comes from Professor Powell’s 2004 exam, and it is not unusual that he asks a question
that requires deriving an asymptotic test statistic in the free response part.

2.3.1 2004 Exam, Question 1A

Question: True/False/Explain. If the Generalized Regression models holds – that is, E(y|X) =
Xβ, V ar(y|X) = σ2Ω, and X full rank with probability one – then the covariance matrix between

6



Aitken’s Generalized LS estimator of β̂GLS (with known Ω matrix) and the classical LS estimator
β̂LS is equal to the variance matrix of the LS estimator.

Answer: False.

Cov(β̂GLS, β̂LS|X) = Cov((X ′Ω−1X)−1X ′Ω−1y, (X ′X)−1X ′y|X)

= ((X ′Ω−1X)−1X ′Ω−1)Cov(y, y|X)((X ′X)−1X ′)′

= ((X ′Ω−1X)−1X ′Ω−1)(σ2Ω)X(X ′X)−1

= σ2(X ′Ω−1X)−1X ′Ω−1ΩX(X ′X)−1

= σ2(X ′Ω−1X)−1X ′X(X ′X)−1

= σ2(X ′Ω−1X)−1

= V ar(β̂GLS|X)

The correct statement would be that the covariance of the GLS and the LS estimators is equal to
the variance of the *GLS* estimator.

2.3.2 Relative Efficiency of GLS to OLS

Question: True/False/Explain. β̂GLS is efficient relative to β̂OLS in the generalized regression
model.

Answer: True. We expect this statement to be true because both are linear unbiased estimators of
β and the case in which β̂OLS is the most efficient estimator is a special case of the generalized
regression model. β̂OLS is as efficient as β̂GLS in this special case of Σ = σ2I but is less efficient
for all other nonsingular, positive definite, symmetric Σ.

As usual we prove this claim by showing that V ar(β̂OLS)− V ar(β̂GLS) is positive semi-definite.

V ar(β̂OLS|X) = V ar((X ′X)−1X ′y|X)

= ((X ′X)−1X ′)V ar(y|X)((X ′X)−1X ′)′

= σ2(X ′X)−1X ′ΩX(X ′X)−1

This question reduces to showing that σ2(X ′X)−1X ′ΩX(X ′X)−1 − σ2(X ′Ω−1X)−1 is positive
semi-definite. σ2 does not affect the positive semi-definiteness of this difference because it is
postive. Accordingly, we use Amemiya (p. 461) and check the positive semi-definiteness of:
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(X ′Ω−1X)− ((X ′X)−1(X ′ΩX)(X ′X)−1)−1

= (X ′Ω−1X)− (X ′X)(X ′ΩX)−1(X ′X)

= (X ′Ω−1/2′Ω−1/2X)− (X ′Ω−1/2′Ω1/2X)(X ′Ω1/2′Ω1/2X)−1(X ′Ω1/2′Ω−1/2X)

= X ′Ω−1/2′(I − Ω1/2X(X ′Ω1/2′Ω1/2X)−1X ′Ω1/2′)Ω−1/2X

= X ′Ω−1/2′(I − PΩ1/2X)Ω−1/2X

= ‖(I − PΩ1/2X))Ω−1/2X‖

This expression is positive semi-definite since it is a norm that must have a nonnegative length.

2.3.3 2004 Exam, 2

Question: A feasible GLS fit of the generalized regression model with K = 3 regressors yields the
estimates β̂ = (2,−1, 2) where the GLS covariance matrix V = σ2[X ′Ω−1X]−1 is estimated as

V̂ =

 2 1 0
1 1 0
0 0 1


using consistent estimators of σ2 and Ω. The sample size N = 403 is large enough so that it is
reasonable to assume a normal approximation holds for the GLS estimator.

Use these results to test the null hypothesis H0 : θ = 1 against a two-sided alternative asymptotic
5% level, where

θ = g(β) = ||β|| = (β2
1 + β2

2 + β2
3)

1
2

Answer: We reject the null hypothesis by using the delta method to construct an approximate
t-statistic.

Recall that
√
N(β̂GLS − β) −→d N(0, V ) where V = σ2(X ′Ω−1X)−1. We are given a V̂ such

that V̂ −→p V .

We are interested in the limiting distribution of θ̂ = g(β̂), which we analyze by the Delta Method:√
N(θ̂ − θ) −→d N(0, GV G′) where
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G =
∂g(β)

∂β′

=
∂(β2

1 + β2
2 + β2

3)
1
2

∂β′

=
1

(β2
1 + β2

2 + β2
3)

1
2

(β1, β2, β3)

=
1

g(β)
(β1, β2, β3)

Therefore an approximate test statistic is θ̂−θ√
GV G′

A∼ N(0, 1).

We estimate G with Ĝ because Ĝ −→p G by the Continuous Mapping Theorem where

Ĝ =
1

g(β̂)
(β̂1, β̂2, β̂3)

=
1

(22 + (−1)2 + (−2)2)
1
2

(2,−1, 2)

=
1

3
(2,−1, 2)

By Slutsky’s Theorem ĜV̂ Ĝ′ −→p GV G
′ where

ĜV̂ Ĝ′ =
1

3

(
2, −1, −2

)
∗

 2 1 0
1 1 0
0 0 1

 ∗ 1

3

 2
−1
−2


=

1

9

(
3, 1, −2

) 2
−1
−2


= 1

Thus to test H0 : θ = 1 against a two-sided alternative, the absolute value of the t-statistic is

|θ̂ − θ0|√
ĜV̂ Ĝ′

=
|3− 1|

1
= 2

which exceeds 1.96, the upper 97.5% critical value of a standard normal. We thus (barely) reject
H0 at an asymptotic 5% level. As is often the case, the sample size N = 403 does not directly
figure into the solution, though it is implicit in the estimate V̂ of the approximate covariance matrix
of β̂.

An alternative solution entails deriving an approximate Wald statistic though it is simpler to com-
pute a t-statstic since there is only one degree of freedom.
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3 Robust OLS Estimation
Why don’t we always use β̂GLS , considering that the generalized model is more realistic and that
β̂GLS = β̂OLS in the case that V ar(ε|X) = σ2I? Calculating β̂GLS hinges upon knowing all of
the elements of Ω, which in practice we do know with certainty because we do not observe ε let
alone anything about its second moment. We should still allow for V ar(ε|X) to be nonspherical
because this framework is more realistic than the classical regression model, and we could try to
compute a feasible GLS estimator by first consistently estimating the elements of Ω using our N
data points. However it is difficult to easily obtain a consistent estimate for the N(N+1)

2
parameters

of Ω because there are more parameters to estimate than data points.

The next few sections present various solutions to this problem depending on what assumptions we
are willing to make about Ω. In this section we analyze the properties of β̂OLS in this generalized
model. Because β̂OLS retains some of its properties from the classical regression model, one
solution to GLS is to compute β̂OLS and correct the aspects that no longer hold in the generalized
context.

3.1 OLS Properties
Although β̂OLS is no longer efficient, it is still unbiased and consistent because these properties
depend on the first moment of ε and the generalized classical regression model relaxes only the
second moment assumption.

Accordingly recall the usual calculations from 240A and the asymptotics sections:

β̂OLS − β = (X ′X)−1X ′y − β
= (X ′X)−1X ′(Xβ + ε)− β
= β + (X ′X)−1X ′ε− β
= (X ′X)−1X ′ε

β̂OLS is unbiased because

E(β̂OLS)− β = E((X ′X)−1X ′ε|X)

= (X ′X)−1X ′E(ε|X)

= (X ′X)−1X ′0

= 0

β̂OLS is consistent because β̂OLS − β =
(

(X′X)−1

n

) (
X′ε
n

)
where (X′X)−1

n
−→p E(X ′X)−1 and

X′ε
n
−→p 0 by the law of large numbers and β̂ − β −→p 0 by Slutsky’s Theorem.
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V ar(β̂OLS) however is neither unbiased nor consistent because these properties depend on the
second moment assumption. We now show how the limiting distribution for β̂OLS depends on the
second moment assumption:

√
n(β̂OLS − β ) =

(
X ′X

n

)−1

(
√
n)

(
X ′ε

n

)
−→d N(0, E(X ′X)−1V ar(X ′ε)E(X ′X)−1)

In the generalized model,

V ar(X ′ε) = plimn→∞
σ2(X ′ΩX)

n

Rearranging the limiting distribution expression further yields:

√
n(β̂OLS − β)√

σ2
(
X′X
n

)−1 (X′ΩX
n

) (
X′X
n

)−1
−→d N(0, 1)

Thus, a consistent estimator of V ar(β̂OLS) is 1
n

(
X′X
n

)−1
(
σ2X′ΩX

n

) (
X′X
n

)−1
.

X′X
n

−1
is straightforward to compute, but as previously mentioned we do not know the values

of Ω and cannot estimate it consistently without further structural assumptions. Advances in the
1980s however now allow us to consistently estimate this middle term nonparametrically without
estimating Ω consistently or making any structural assumptions about it. In these procedures we
estimate β with β̂OLS and replace our standard errors with a robust estimator. We will return to
these procedures next week when we discuss heteroskedasticity and serial correlation in greater
detail.

4 Feasible GLS Alternatives: SUR
An alternative to correcting the β̂OLS standard errors is to use the unbiased, efficient GLS estimator
and to make assumptions to consistently estimate Ω. This approach is possible by arguing that Ω
has a specific structure. Often the least squares residuals are used to estimate Ω̂. We then substitute
Ω̂ for Ω into β̂GLS to compute a feasible estimator for GLS, β̂FGLS . Because Ω̂ is a consistent
estimator of Ω, β̂GLS and β̂FGLS have the same asymptotic distribution under reasonable regularity
conditions that we assume are true in the models we consider in 240B. With this consistent esti-
mator for Ω we thus argue that in sufficiently large samples that β̂FGLS has the same properties as
β̂GLS . It is only asymptotically equivalent however if we posed the correct structure on Ω.

The first model that we consider that lends itself to Feasible GLS estimation is Arnold Zellner’s
Seemingly Unrelated Regressions (SUR) estimator, which he published in 1962.
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4.1 Motivation and Examples
SUR is least squares estimation on a system of equations where each individual equation, j, is first
stacked by each individual, i, and then by j. The system thus contains at least two distinct depen-
dent variables, and each individual should be represented in each j. The important requirement is
that the errors associated with each individual’s equations across j are correlated. However, they
are not correlated across individuals within equation j.

For example, suppose you would like to study factors associated with better GRE scores. It is
conceivable that at least one factor that is unobserved to the econometrician and helps someone do
well on the math section also helps for the verbal and writing sections. This factor can be something
about test-taking ability. Then the errors in the equation for the math score, the equation for the
verbal score, and the equation for the writing score are correlated for an individual because these
unobserved factors affect all three equations in the same way for each individual. However after
controlling for observable factors such as neighborhood and family income, it is conceivable that
unobserved factors are not correlated across individuals for math scores. If there are observed
regressors that are important for explaining verbal or writing but not math then this set-up would
be an excellent case for SUR.

SUR has not appeared frequently in the empirical literature simply because there are not numerous
models that lend itself to estimating j equations, each stacked first by i individuals. When such
models arise, it is not always easy to demonstrate that the SUR assumptions are satisfied or that the
SUR estimator is more efficient than OLS (which we discuss below). Accordingly SUR is often
used as benchmark against OLS or to simply argue that we could proceed with OLS since it would
be just as efficient as SUR.

For example, Justin McCrary (2002) responds to Steve Levitt (1997)’s paper about whether there
are electoral cycles in police hiring and whether these cycles should instrument for the causal
effect of police hiring on different types of crime. Levitt considers various crimes, such as murder,
rape, and burglarly for a series of cities over time, and finds police reduce violent crime but have a
smaller effect on property crime. McCrary cites Zellner (1962) to argue that SUR would be more
appropriate than Levitt’s two-step estimation procedure for improving efficiency, but OLS for each
crime category equation separately is most appropriate because the model is a special case in which
OLS for each category separately is as efficient as GLS to the stacked SUR model.

Orley Ashenfelter has used SUR in a series of papers in which he examines the returns to education
in which he has data for multiple members of the same family. For example in his well-known
paper with Alan Krueger in 1994 they analyze the returns to education for twins. They use OLS
for the complete sample as a baseline estimate and then stack the equations and use SUR. For each
twin pair they designate a 1st twin and a 2nd twin and they first stack each returns to education
equation across families for each twin number and then by twin number. The assumption is that
there are unobserved factors that affect income for both twins in a family but not across families
within twin number. They then argue that SUR is more efficient than OLS.
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4.2 SUR Model
The SUR model that we analyze is:

yij = x′ijβj + εij i = 1, .., N j = 1, ...,M
yj = Xjβj + εj

where i tracks the individuals in the sample and j tracks the different categories of dependent
variables.

yj is the Nx1 vector obtained by stacking the yij for a fixed j.
Xj is the NxKj matrix obtained by stacking the row vectors x′ij for a fixed j and is indexed by Kj ,
which reflects that we do not need to constrain the model to having the same explanatory variables
for each equation j.
It follows that βj is a Kjx1 vector.

Each equation in terms of j satisfies the assumptions of the classical regression model, and we add
one assumption about how the equations are related to each other.
The assumptions of the SUR model are thus:

1) E(yj|Xj) = Xjβ

2) V (yj|Xj) = σjjIN

2’) Cov(yj, yk|Xj, Xk) = σjkIN

3) Xj are nonstochastic and full rank with probability 1

Assumptions 1, 2, and 3 have the same interpretation as the classical regression model. Assumption
2 states that for each category j, the conditional variance of each error is σjj .
Assumption 2’ is the addition. It says that the errors are correlated only within an individual across
equations. Across equations the errors for different individuals are not correlated. For categories j
and k where j 6= k , all individual’s error terms have equal correlation of σjk.

Stacking once more over j yields the general representation of y = Xβ + ε.
y is the NMx1 vector obtained by stacking over yj . X is a NMx

∑M
j=1Kj block-diagonal ma-

trix, with each block being a Xj matrix. This representation is necessary so that in the matrix
multiplication of Xβ we can back out each equation in terms of j.

V ar(y|X) requires use of the Kronecker product representation. Professor Powell provides some
detail about the definition and properties of the Kronecker product in his notes.
By assumptions 2 and 2’,

V (y|X) =


σ11IN σ12IN ... σ1MIN
. . . .
. . . .
σM1IN . . σMMIN

 = Σ⊗ IN
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Substituting this variance into βOLS and βGLS thus yields:

β̂OLS = (X ′X)−1X ′y

β̂GLS = (X ′(Σ⊗ IN)−1X)−1X ′(Σ⊗ IN)−1y

The conditional variances of each estimator are:

V ar(β̂OLS|X) = ((X ′X)−1X ′)V ar(y|X)((X ′X)−1X ′)′

= (X ′X)−1X ′(Σ⊗ IN)X(X ′X)−1

V ar(β̂GLS|X) = [(X ′(Σ⊗ IN)−1X)−1X ′(Σ⊗ IN)−1]V ar(y|X)[(X ′(Σ⊗ IN)−1X)−1X ′(Σ⊗ IN)−1]′

= (X ′(Σ⊗ IN)−1X)−1X ′(Σ⊗ IN)−1(Σ⊗ IN)(Σ⊗ IN)−1X(X ′(Σ⊗ IN)−1X)−1

= (X ′(Σ⊗ IN)−1X)−1

Professor Powell derives in his lectures notes two distinct cases in which GLS in the SUR model
is equivalent to estimating each dependent variable category separately with OLS:

a) The equations are unrelated (no seemingly): Σ is diagonal because σjk = 0 for j 6= k.
b) Each equation has the same explanatory variables: Xj = X0 for each j.

Finally as usual we rarely know Ω, but now we can consistently estimate it. Professor Powell’s
notes discuss a feasible estimator based on residuals that is biased but consistent. Under reasonable
regularity conditions, using these estimates yields an estimator that is asymptotically equivalent to
β̂GLS , that with a sufficiently large sample is unbiased, consistent, and has a consistent covariance
matrix. These results hinge upon the SUR assumptions being correct.

4.3 Exercises
A version of Goldberger 30.1 appeared in both the 2002 and 2005 exams. A version of Goldberger
30.2 appeared in 2003. This section thus presents solutions to 30.1, 30.2, and 30.3 in Goldberger.

4.3.1 Goldberger 30.1

Question: True or False? In the SUR model, if the explanatory variables in the two equations are
identical, then the LS residuals from the two equations are uncorrelated with each other.

Answer: The statement is false unless σ12 = 0, thereby making the equations urelated.

Let
(
y1

y2

)
=

(
X1 0
0 X2

)(
β1

β2

)
+

(
ε1

ε2

)
where V ar(y|X) =

(
σ11I σ12I
σ21I σ22I

)

Suppose X1 = X2 = X .

14



Then using OLS, β̂1 = (X ′1X1)−1X ′1y1 = (X ′X)−1X ′y1 and β̂2 = (X ′2X2)−1X ′2y2 = (X ′X)−1X ′y2.

The residual vector from the first equation is e1 = y1 − X1β̂1 = Iy1 − X(X ′X)−1X ′y1 = (I −
PX)y1 where PX = X(X ′X)−1X ′ is a projection matrix so (I − PX) is a projection matrix.

Similarly for the second equation, e2 = y2 −X2β̂2 = Iy2 −X(X ′X)−1X ′y2 = (I − PX)y2.

Cov(e1, e2|X) = Cov((I − PX)y1, (I − PX)y2)|X)

= (I − PX)Cov(y1, y2|X)(I − PX)′

= (I − PX)σ12I(I − PX)

= σ12(I − PX)(I − PX) = σ12(I − PX) 6= 0

4.3.2 Goldberger 30.2

Question: True or False? 1. In the SUR Model, if the explanatory variables in the two equations are
orthogonal to each other, then the LS coefficient estimates for the two equations are uncorrelated
with each other. 2. The GLS estimate reduces to the LS estimate.

Answer: The first statement is true, the second statement is false.

1. Let
(
y1

y2

)
=

(
X1 0
0 X2

)(
β1

β2

)
+

(
ε1

ε2

)
where V ar(y|X) =

(
σ11I σ12I
σ21I σ22I

)
Using OLS, β̂1 = (X ′1X1)−1X ′1y1 and β̂2 = (X ′2X2)−1X ′2y2.

If the explanatory variables in the two equations are orthogonal to each other, then X ′1X2 = 0.

Cov(β̂1, β̂2|X) = ((X ′1X1)−1X ′1)Cov(y1, y2|X)((X ′2X2)−1X ′2)′

= (X ′1X1)−1X ′1σ12I(X2(X ′2X2)−1)

= σ12(X ′1X1)−1X ′1X2(X ′2X2)−1

= σ12(X ′1X1)−1(0)(X ′2X2)−1 = 0

Thus, it is true that the covariance of OLS estimators β̂1 and β̂2 is zero.
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2. (Note Professor Powell added this part to Goldberger 30.2 in the 2003 exam.)

β̂GLS =

((
X1 0
0 X2

)′(
σ11I σ12I
σ21I σ22I

)(
X1 0
0 X2

))−1(
X1 0
0 X2

)′(
σ11I σ12I
σ21I σ22I

)(
y1

y2

)
=

((
σ11X

′
1 σ12X

′
1

σ12X
′
2 σ22X

′
2

)(
X1 0
0 X2

))−1(
σ11X

′
1 σ12X

′
1

σ12X
′
2 σ22X

′
2

)(
y1

y2

)
=

(
σ11X

′
1X1 σ12X

′
1X2

σ12X
′
2X1 σ22X

′
2X2

)−1(
σ11X

′
1y1 + σ12X

′
1y2

σ12X
′
2y1 + σ22X

′
2y2

)
=

(
σ11X

′
1X1 0

0 σ22X
′
2X2

)−1(
σ11X

′
1y1 + σ12X

′
1y2

σ12X
′
2y1 + σ22X

′
2y2

)
=

( 1
σ11

(X ′1X1)−1 0

0 1
σ22

(X ′2X2)−1

)(
σ11X

′
1y1 + σ12X

′
1y2

σ12X
′
2y1 + σ22X

′
2y2

)
=

(
(X ′1X1)−1X ′1y1 + σ12

σ11
(X ′1X1)−1X ′1y2

σ21

σ22
(X ′2X2)−1X ′2y1 + (X ′2X2)−1X ′2y2

)
6=
(

(X ′1X1)−1X ′1y1

(X ′2X2)−1X ′2y2

)
= β̂OLS

Thus, β̂GLS does not reduce to β̂OLS in this case.

4.3.3 Goldberger 30.3

Question: Suppose that E(y1) = x1β1, E(y2) = x2β2, V (y1) = 4I, V (y2) = 5I, and C(y1, y2) =
2I . Here y1, y2, x1, and x2 are n× 1, with x′1x1 = 5, x′2x2 = 6, x′1x2 = 3. Calculate the variances
of the OLS and GLS estimators.

Answer:

Let
(
y1

y2

)
=

(
X1 0
0 X2

)(
β1

β2

)
+

(
ε1

ε2

)
where V ar(y|X) = (Σ⊗IN) =

(
4I 2I
2I 5I

)

OLS Variance -

Recall that V ar(βOLS|X) = V ar((X ′X)−1X ′y|X) = (X ′X)−1X ′(Σ⊗ IN)X(X ′X)−1:
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(X ′X)−1 =

((
X1 0
0 X2

)′(
X1 0
0 X2

))−1

=

(
X ′1X1 0

0 X ′2X2

)−1

=

(
5 0
0 6

)−1

=

(
1/5 0
0 1/6

)
X ′(Σ⊗ IN)X =

(
X1 0
0 X2

)′(
4I 2I
2I 5I

)(
X1 0
0 X2

)
=

(
4X ′1 2X ′1
2X ′2 5X ′2

)(
X1 0
0 X2

)
=

(
4X ′1X1 2X ′1X2

2X ′2X1 5X ′2X2

)
=

(
20 6
6 30

)
(X ′X)−1X ′ΣX(X ′X)−1 =

(
1/5 0
0 1/6

)(
20 6
6 30

)(
1/5 0
0 1/6

)
=

(
4/5 1/5
1/5 5/6

)

GLS Variance -

Recall that V ar(β̂GLS|X) = (X ′(Σ⊗ IN)−1X)−1:

(Σ⊗ IN)−1 =

(
4I 2I
2I 5I

)−1

=
1

16

(
5I −2I
−2I 4I

)
(X ′(Σ⊗ IN)−1X)−1 =

[(
X1 0
0 X2

)′(
1

16

(
5I −2I
−2I 4I

)((
X1 0
0 X2

)]−1

=

(
1

16

(
5X ′1X1 −2X ′1X2

−2X ′2X1 4X ′2X2

))−1

=

(
1

16

(
25 −6
−6 24

))−1

=

(
32
47

8
47

8
47

100
141

)

Note that the difference between the OLS and GLS variances is positive definite, which is what we
expect in this case since GLS is more efficient.

17



Heteroskedasticity and Serial Correlation

Jeffrey Greenbaum

February 23, 2007

Contents
1 Section Preamble 2

2 Weighted Least Squares 3
2.1 WLS Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Feasible WLS 3
3.1 Multiplicative Heteroskedasticity Models . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Testing for Heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Feasible Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4.1 2002 Exam, 1B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.4.2 2004 Exam, 1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4.3 Grouped-Data Regression Model . . . . . . . . . . . . . . . . . . . . . . 7
3.4.4 Multiplicative Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Eicker-White Robust Standard Errors 9

5 Structural Approach to Serial Correlation 10
5.1 First-Order Serial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Testing for Serial Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Feasible GLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4.1 2002 Exam, Question 1C . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.2 2003 Exam, Question 1B . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.4.3 2004 Exam, Question 1B . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Nonstructural Approach to Serial Correlation 17

1



1 Section Preamble
This week we continue with the generalized regression model and two cases in which we can
construct a feasible estimator that has the same asymptotic properties as β̂GLS . We also present two
robust estimators for the standard errors of β̂OLS as alternatives to imposing structure to estimate
Ω. The first case is when V ar(ε|X) is purely heteroskedastic, and the second is serial correlation.

Recall the problem with the generalized regression model that the standard errors of β̂OLS are
no longer consistent. β̂GLS is the most efficient linear unbiased estimator of β, but computing it
requires knowing V ar(ε|X) = Σ though ε is unobserved. A consistent estimator of Σ can produce
the feasible estimator, β̂FGLS , that is asymptotically equivalent to β̂GLS . However it is difficult to
consistently estimate Σ because it has more parameters than data points. We can potentially reduce
this dimensionality concern by posing structure on how the elements of Σ are formed such that
there are no longer more parameters to estimate than data points.

We saw one such case of FGLS last week with SUR and this week we examine pure heteroskedas-
ticity and serial correlation. The solution for the two are similar. Our approach is to assume a
functional form for how the errors are heteroskedastic or serially correlated; estimate this structure
using our data; and use this estimate to construct β̂FGLS . If the correct structure is chosen then this
estimator has the same asymptotic properties as β̂GLS , wherein β̂FGLS is asymptotically BLUE
with consistently estimated standard errors.

FGLS may exacerbate the problem however if incorrectly applied. Hypothesis testing of our struc-
ture where the null is homoskedasticity or zero serial correlation as appropriate to the case could
suggest that Ω = I . If so we can use β̂GLS , which would be equivalent to β̂OLS . Yet hypothesis
testing may spuriously lead to the wrong conclusion. Moreover we may either assume the wrong
structure of Σ, or have no intuition about what its structure might be. In any of these situations Σ̂
might contain more noise than information about Σ and FGLS will likely do worse than OLS.

An alternative approach is to use β̂OLS – which remains unbiased and consistent – and to instead
use consistently estimated standard errors. Although it is longer BLUE if V ar(y|X) 6= σ2I , most
empirical papers prefer this method because of these concerns about posing a structure for Σ. In
fact many papers automatically compute robust standard erorrs without considering whether Ω 6= I
because doing so does not change β̂OLS; we do not know ε so it is highly plausible that Ω 6= I;
and comparing them to σ̂2(X ′X)−1 reveals the extent to which Ω 6= I . In large samples the loss
of efficiency and amount of error introduced with these standard errors is negligible for hypothesis
testing, and adjustments have been proposed for smaller samples. Moreover OLS point estimates
are appealing for policy applications because they have a ceteris paribus interpretation.

Although β̂OLS and β̂GLS are both unbiased estimators of β, point estimates inevitably differ unless
V ar(y|X) = σ2I . It is not necessary to be concerned with such differences however unless the
difference is economically significant, such as a difference in sign while inference on both are
highly statistically significant. In this case another classical assumption is likely to be faulty such
as the linear expectations assumption, which we will begin to relax next week.
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2 Weighted Least Squares
GLS estimation with pure heteroskedasticity is known as weighted least squares. In pure het-
eroskedasticity we assume zero serial correlation wherein all of the off-diagonal elements of Σ, or
equivalently Ω, are zero. If the diagonal elements are equal than Ω = I , and the errors are ho-
moskedastic. In this section we assume to know all of the elements along the main diagonal of Σ.
In the next we analyze a more realistic setting in which we do not know the errors but can construct
a feasible estimator by estimating a model of how the errors are heteroskedastic. We then return to
OLS and consider how to correct the standard errors nonparametrically so they are consistent.

2.1 WLS Estimator
In the case of pure heteroskedasticity V ar(y|X) = Σ = Diag[σ2

i ]. Following the derivation of
β̂GLS , β̂WLS is BLUE if we use OLS to estimate the generalized linear model that is multiplied
through by Σ−1/2. If we were to additionally assume that the errors are independent and distributed
normally then finite sample inference should use β̂WLS .

Let wi = 1
σ2

i
. Because Σ is diagonal, Σ−1/2 = Diag[w

1/2
i ]. As a result,

β̂WLS = (X ′Σ−1X)−1X ′Σ−1y

= (X ′(Diag[wi])X)−1X ′(Diag[wi])y

=

(
n∑
i=1

ωi(xix
′
i)

)−1 n∑
i=1

ωixiyi

β̂WLS is known as weighted least squares because it is equivalently derived by minimizing the
weighted sum of the squared residuals. Specifically each squared residual is multiplied by the in-
verse of σ2

i because we are transforming our linear model by Σ−1/2. As with all GLS estimation
this transformation is equivalent to finding the estimator that minimizes (y −Xβ)′Σ−1(y −Xβ).
The weighted least squares interpretation becomes clear when expressing this statement in sum-
mation notation since Σ = Diag[wi].

3 Feasible WLS
In practice Σ contains unknown parameters because we do not know εi let alone V ar(εi|xi). In-
stead we construct a feasible weighted least squares estimator, β̂FWLS , by estimating V ar(yi) = σ2

i

and estimating β̂WLS with Σ̂ in place of Σ. As with feasible GLS estimation we exploit that
Σ̂ −→p Σ enables β̂FWLS to be asymptotically equivalent to β̂WLS if the correct structure for the
heteroskedasticity function is chosen.
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3.1 Multiplicative Heteroskedasticity Models
In lecture Professor Powell presented the multiplicative heteroskedasticity model because of its
wide use in Feasible WLS, which is the linear model yi = xiβ + ui with error terms of the form:

ui = ciεi

where εi ∼ iid(0, σ2).
It thus follows that E(ε2

i ) = V ar(εi) + E(εi)
2 = σ2.

Furthermore we assume that the function c2
i has an underlying linear form:

c2
i = h(z′iθ)

where the variables zi are some observable functions of the regressors, xi, excluding the constant
term. θ is a vector of coefficients to be estimated, whose estimation we will return to when dis-
cussing how to construct a feasible estimator. Moreover h(.) > 0 so that V ar(yi|xi) > 0 ∀i. It is
normalized so that h(0) = 1 and h′(0) 6= 0. Professor Powell provides examples of such functions
in his notes.

Combining these assumptions about the structure of the variance:

V ar(ui) = V ar(ciεi) = c2
iV ar(εi) = h(z′iθ)σ

2

E(ui) = E(ciεi) = ciE(εi) = ci ∗ 0 = 0

⇒ V ar(ui) = E(u2
i )

The error in this model, u, is homoskedastic if V ar(ui) is constant ∀i, or equivalently if h(z′iθ) is
constant ∀i. By our normalization we know that h(z′iθ) is constant ∀i if z′iθ = 0 because h(0) = 1.
It is not sensible to expect that zi = 0 so if θ = 0 then z′iθ = 0. Therefore, if θ = 0 then
V ar(ui) = 1 ∗ σ2 = σ2 and ui is homoskedastic.

3.2 Testing for Heteroskedasticity
Accordingly a test for heteroskedasticity reduces to testing the null hypothesis H0 : θ = 0. The
alternative hypothesis isH1 : θ 6= 0. We now derive a linear regression that lends to this hypothesis
test. Note that this test presumes that we have assumed the functional form for h(.) correctly.

Under the null hypothesis where c2
i = 1, V ar(ui) = h(z′iθ)σ

2 = σ2. In addition

E(u2
i ) = V ar(ui) = σ2 = h(z′iθ)σ

2

E(ε2
i ) = σ2 = h(z′iθ)σ

2

⇒ E(u2
i ) = E(ε2

i )
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A first order Taylor Series approximation for h(z′iθ) about θ = 0 is h(zi
′θ) = h(0) + h′(0)zi

′θ +
R(z′iθ). We assume that as z′iθ → 0, R(z′iθ)→ 0 at rate that is at least quadratic. This assumption
can potentially limit functional forms of the heteroskedasticity, but we accept it as a reasonable
regularity condition. We thus assume that in the neighborhood near θ = 0, h(zi

′θ) = h(0) +
h′(0)zi

′θ = 1 + h′(0)zi
′θ.

We now derive a regression function to test our errors for heteroskedasticity:

E(ε2
i ) = σ2h(z′iθ)

= σ2(1 + h′(0)z′iθ)

= σ2 + σ2h′(0)z′iθ

Let δ = σ2h′(0)θ. Moreover if we include an error, ri, and assume that E(ri|zi) = 0 and
V ar(ri|zi) = τ , then this model satisfies the classical regression assumptions. Therefore, we
can test the regression:

ε2
i = σ2 + zi

′δ + ri

Since θ = 0 ⇒ δ = 0, we test the null hypothesis that H0 : δ = 0 in this model. Note that we
could use our composite error u2

i in place of disturbance ε2
i because E(ε2

i ) = E(u2
i ).

However we cannot estimate this model because we do not observe εi. We use the results of
Breusch and Pagan (1979) to test this model, which is based on the least squares residuals in place
of the errors. Although the justification for the method is beyond the scope of the class, Professor
Powell expects that you know the steps of the test and that you could apply it to data.

Here is the 3-step procedure from Breusch and Pagan (1979) to test the null hypothesis of ho-
moskedasticity:

1. Compute ε̂i2 = (yi − x′iβ̂OLS)2 and use it as a proxy for ε2
i because the squared residuals are

observable and are consistent estimators of the squared errors.

2. Regress ε̂i2 on 1 and zi and obtain the usual constant-adjusted R2 =
∑n

i=1(ŷi−ȳi)
2∑n

i=1(yi−ȳi)2
from this

squared residual regression.

3. Under the null hypothesis, Breusch and Pagan (1979) prove that the statistic

T = NR2 −→d χ
2
p

where p = dim(δ) = dim(zi).

We reject H0 if T exceeds the upper critical value of a chi-squared variable with p degrees of
freedom.

Professor Powell discusses a few other test statistics depending on what assumptions we are willing
to make about the data or errors. You are responsible for them insofar as Professor Powell presents
them. Here is a summary:
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Table 1: Summary of Tests for Heteroskedasticity
Name Expression Distribution Comment

Breusch-Pagan T = NR2 χ2
p p = dim(zi)

F F = (N−K)R2

(1−R2)p
F(p,N−K) F ∼= T/p

Studentized LM T ′ = RSS
τ̂

χ2
p if εi gaussian, τ = 2σ4

Goldfeld-Quandt s2
1/s

2
2 F([N/2]−k,N−[N/2]−k) gaussian εi, one-sided

3.3 Feasible Estimator
If we reject the null hypothesis of homoskedasticity, then we must account for heteroskedastic-
ity. To compute β̂FWLS we must estimate Σ̂ = Diag[E(ε2

i )]. Since E(ε2
i ) = σ2h(z′iθ), we must

estimate θ and σ2:

1. Use ê2
i = (yi − x′iβ̂OLS)2 as a proxy for ε2

i because the least squares residuals are consistent
estimators of the squared errors. Express the heteroskedasticity in terms of E(ε2

i ) and estimate θ
and σ2 using least squares with ê2

i as the dependent variable. It is often possible to transform the
heteroskedasticity function so that the function is linear. Professor Powell provides examples of
this step in his notes.

2. Do least squares with y∗i = yi ∗ h(z′iθ̂)
−1/2 and x∗i = xi ∗ h(z′iθ̂)

−1/2. Doing so yields β̂FWLS

where Σ̂ = σ̂2Diag[h(z′iθ̂)].

If the variance structure is correctly specified, then β̂FWLS is asymptotically equivalent to β̂GLS . It
would thus be asymptotically BLUE with the same asymptotic variance as β̂GLS . Moreover each
estimated variance must be positive or β̂FWLS is not well defined.

3.4 Exercises
The first two exercises are questions from previous exams. As with last week’s GLS questions,
Feasible WLS – specifically Breusch-Pagan – tends to appear in the True/False section. The third
exercise is to demonstrate a very appropriate application of WLS that does not require feasible
estimation. The fourth is to provide some practice with multiplicative models.

3.4.1 2002 Exam, 1B

Note that a version of this question also appeared in the 2005 Exam as question 1B.

Question: True/False/Explain. To test for heteroskedastic errors in a linear model, it is useful to
regress functions of the absolute values of least-squares residuals (eg. the squared residuals) on
functions of the regressors. The R-squared from this second stage regrssion will be (approximately)
distributed as chi-square random variable under the null hypothesis of no heteroskedastidcity, with
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degress of freedome equal to the number of no-constant functions of the regressors in the second-
stage.

Answer: False. The statement would be correct if ”R-squared” were replaced by the ”sample size
times R-squared.” Under the null of homoskedasticityR2 −→p 0, but as Breusch and Pagan (1979)
show N ∗ R2 −→d χ

2
r under H0 where r is the number of non-constant regressors in the second

stage regression.

3.4.2 2004 Exam, 1D

Question: True/False/Explain. In a linear model with an intercept and two nonrandom, noncon-
stant regressors, and with sample size N = 200, it is suspected that a ’random coefficients’ model
applies, i.e., that the intercept term and two slope coefficients are jointly random across individu-
als, independent of the regressors. If the squared values of the LS residuals from this model are
themselves fit to a quadratic function of the regressors, and if the R2 from this second-step regres-
sion equals 0.06, the null hypothesis of no heteroskedasticity should be rejected at an approximate
5-percent level.

Answer: True. The Breusch-Pagan test statistic for the null homoskedasticity is NR2 = 200 ∗
0.06 = 12 for these data. The second-step regresses the squared LS residuals on a constant term
and five explanatory variables for the ’random coefficients’ alternative, specifically, x1, x2, x

2
1, x

2
2,

and x1x2, where x1 and x2 are the non-constant regressors in the original LS regression. As a result
the null hypothesis tests whether 5 parameters equal zero. Since the upper 5-percent critical value
for a χ2 random variable with 5 degrees of freedom is 11.07 is less than our test statistic of 12, we
reject the null hypothesis of homoskedasticity.

3.4.3 Grouped-Data Regression Model

Question: True/False/Explain. Suppose we are interested in estimating a linear model, yij =
x′ijβ + εij , that satisfies the classical linear assumptions, including a scalar variance-covariance
matrix. However we only have access to data that is the average for each group j. Moreover we
know the amount of observations in the original model for each j. The WLS squares estimator that
is weighted by square root of the number of observations in j ∀j is BLUE.

Answer: True. Suppose E(εij) = 0 and V ar(εij) = σ2. Given our limitation to only group
averages, we are analyze the model ȳj = x̄j

′β + ε̄j . Let mj be the number of observations in the
the original model for each unit j. Then for example ε̄j = m−1

j

∑mj

i=1 εij .

We multiply this model by m1/2
j and show it satisfies the Gauss-Markov assumptions:
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E(m
1/2
j ε̄j) = m

1/2
j E(ε̄j)

= m
1/2
j E(m−1

j

mj∑
i=1

εij)

= m
1/2
j ∗m−1

j

mj∑
i=1

E(εij)

= m
−1/2
j ∗

mj∑
i=1

0

= m
−1/2
j ∗ (mj ∗ 0) = 0

V ar(m
1/2
j ε̄j) = mjV ar(ε̄j)

= mjV ar(m
−1
j

mj∑
i=1

εij)

= mj ∗m−2
j

mj∑
i=1

V ar(εij)

= m−1
j ∗

mj∑
i=1

σ2

= m−1
j ∗ (mj ∗ σ2) = σ2

As a result, this weighting causes β̂WLS to be BLUE. Note that this model is applicable for any
possible aggregator j, such as individuals in a company’s firms, US states, or countries in a cross-
country study. However if the original linear model is not homoskedastic, then we would proceed
with Eicker-White standard errors.

3.4.4 Multiplicative Model

Question: Suppose that the sample has size N=125, and the random variables yi are independent
with E(yi) = βxi and V (yi) = σ2(1 + βxi)

2.

1) Is this a multiplicative model?

Yes. The model is: yi = βxi + εi where εi = ui(1 + βxi) for ui ∼ iid(0, σ2).

This error produces the correct form of heteroskedasticity since V ar(yi) = V ar(εi) = V ar(ui(1+
βxi)) = σ2(1 + βxi)

2. Moreover E(εi) = 0.

Let h(z′iθ) = (1 + θzi)
2 where θ = β and zi = xi. For this h(.), h(0) = 1 and h′(0) 6= 0.
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2) How could you test for heteroskedasticity in this model?

E(ε2i ) = V ar(εi) so we test the null H0 : δ1 = δ2 = 0 in the model ε2i = σ2 + δ1xi + δ2x
2
i + ri.

We assume ri is homoskedastic and mean zero. We derive this model by expanding h(.) and
capturing each coefficient by one parameter. Homoskedasticity corresponds with the parameters
of the nonconstant terms being equal to zero, which as expected would be equivalent to θ = 0.

We proxy ε2i with e2
i = (yi − β̂xi)2, the squared least squares residuals. We estimate

e2
i = σ2 + δ1xi + δ2x

2
i + ri

We compute the fitted values: êi2 = σ̂2 + δ̂1xi + δ̂2x
2
i .

We compute R2 = (ê−ē)′(ê−ē)
(e−ē)′(e−ē) .

We reject H0 if 125R2 > qχ2
2=0.95 where qχ2

2=0.95 is the 95th percentile of the χ2
2 distribution.

3) Construct a GLS estimator of β.

β̂FWLS = (X ′Σ̂−1X)−1X ′Σ̂−1y

where Σ̂ = Diag[σ̂2(1 + β̂OLSxi)
2] and σ̂2 is as previously estimated.

4 Eicker-White Robust Standard Errors
Alternatively we can use β̂OLS – which is unbiased and consistent – and correct the standard errors
nonparametrically so that they are consistent. The benefit of this approach is that it does not require
any structure on the nature of the heteroskedasticity. In addition the structure of the heteroskedas-
ticity may not be correctly specified, and a diagnostic test may falsely reject the hypothesis that the
errors are homoskedastic. An incorrectly specified structure would cause β̂FGLS to not be asymp-
totically BLUE nor have a consistent covariance estimator. Moreover the interpretation of OLS
estimates is desirable for policy because of its ceteris paribus nature.

Specifically, the variance-covariance matrix for β̂OLS is V ar(β̂OLS|X) = (X ′X)−1X ′ΣX(X ′X)−1.
Recall that these standard errors cannot be consistently estimated because of the difficulty in con-
sistently estimating Σ without imposing structure since there are more parameters to estimate than
data points. Nevertheless, White (1980) generalizes Eicker (1967) to show that it is possible to
consistently estimate plim

(
σ2
(
X′ΩX
n

))
. With pure heteroskedasticity, Σ must be a diagonal ma-

trix. Accordingly White proves that a consistent covariance estimator draws upon the ordinary
least squares residuals:

̂V ar(β̂OLS|X) = (X ′X)−1X ′Diag[(yi − x′iβ̂OLS)2]X(X ′X)−1
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That is, White proves that Σ̂ = Diag[(yi − x′iβ̂OLS)2], a diagonal matrix of the OLS residuals, is
not a consistent estimator of Σ, but X

′Diag[(yi−x′iβ̂OLS)2]X

n
is a consistent estimator of plimX′ΣX

n
.

This estimator is known as the heteroskedasticity-consistent covariance matrix estimator, and often
includes combinations of the authors’ names. Note that Professor Powell does not prove this result
because it is beyond the scope of the course. However you should understand its purpose and to
construct the estimator in Matlab. Note that in Stata one would type ”, robust” after the regression.

Although Professor Powell motivates Eicker-White standard errors as a correction to FGLS when
the incorrect heteroskedasticity function is assumed, as he acknowledges most researchers go
straight to the case of classical least squares estimation since we prefer the interpretation of β̂OLS
to β̂FGLS . In finite samples several adjustments based on degrees of freedom have been proposed
to help make small sapmle inference more accurate. Relative to an asymptotically correct β̂FGLS ,
hypothesis testing based on the corrected standard errors is likely over stated. If OLS yields highly
statistically significant results, however, then we can likely trust inferences based on OLS. If OLS
yields results that are economically different from FGLS, there is likely a problem with another
assumption.

5 Structural Approach to Serial Correlation
Serial Correlation means that in the linear model yt = x′tβ + εt the variance of the errors:
Σ = E(εε′|X) has non-zero elements off the diagonal. In this section we consider time series
data because it is plausible to express the relationship between the errors mathematically. We usu-
ally assume the error terms are weakly stationary, wherein V ar(yt) = σ2

y ∀t, thus returning to
homoskedasticity and the diagonal elements of Σ being σ2 so that we can factor them out and get
a diagonal of ones.

As with pure heteroskedasticity we consider how to construct consistent standard errors if they are
serially correlated. Our first approach is to assume a functional form for the serial correlation; esti-
mate it; and test it for serial correlation. If we find evidence of serial correlation then we can use our
estimated functional form to construct a feasible GLS estimator. Just as with pure heteroskedas-
ticity, the standard errors will only be consistent if we have assumed the correct functional form of
serial correlation. Alternatively we can proceed with OLS and use the nonparametric Newey-West
estimator to correct the standard errors so they are consistent.

Although we only discuss serial correlation in time series data in this section and in 240B, cross-
sectional data can also have correlated errors. At the least empiricists argue that unobservable fac-
tors are correlated within a geographic unit or within a household whenever possible. We account
for this correlation by clustering our standard errors. For example, one might argue in Ashenfelter
and Krueger (1994)’s returns to education experiment on twins that the unobservable characteris-
tics are correlated within twin pair but not necessarily across twin pair. In an OLS regression that
pools all of the twins data together should thus cluster standard errors by twin pair. In Stata, type
”, cluster” after the regression; it embeds the robust command. A standard reference is Moulton
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(1986, 1990), and one would discuss clustering in an applied econometrics or labor economics
class or in public policy/public economics.

5.1 First-Order Serial Correlation
Consider the linear model:

yt = x′tβ + εt, t = 1, ...T

where Cov(εt, εs) 6= 0. Specifically, we consider that the errors follow a weakly stationary AR(1)
process:

εt = ρεt−1 + ut

where the ut are i.i.d., E(ut) = 0, V ar(ut) = σ2, and ut are uncorrelated with xt.
This last assumption eliminates the possibility of having a lagged y among the regressors.

By stationarity the variance of each εt is the same ∀t.

V ar(εt) = V ar(ρεt−1 + ut)

= ρ2V ar(εt−1) + V ar(ut) + 2Cov(εt−1, ut)

= ρ2V ar(εt) + σ2 + 0

⇒ V ar(εt)(1− ρ2) = σ2

⇒ V ar(εt) =
σ2

1− ρ2

By recursion we can repress εt as

εt = ρεt−1 + ut = ρ(ρεt−2 + ut−1) + ut

= ρ2εt−2 + ρut−1 + ut = ρ2(ρεt−3 + ut−2) + ρut−1 + ut

= ρ3εt−3 + ρ2ut−2 + ρut−1 + ut

... = ρsεt−s +
s−1∑
i=0

ρiut−i

We use this result to compute the off-diagonal covariances in the variance-covariance matrix:
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Cov(εt, εt−s) = Cov(ρsεt−s +
s−1∑
i=0

ρiut−i, εt−s)

= ρsCov(εt−s, εt−s) + Cov(
s−1∑
i=0

ρiut−i, εt−s)

= ρsV ar(εt−s) + 0

= ρs
σ2

1− ρ2

Using these results

V ar(ε) = σ2Ω = σ2


1 ρ ρ2 ..... ρT−1

ρ 1 ρ ..... ρT−2

. . . . .

. . . . .
ρT−1 ρT−2 ..... ... 1


TxT

1

1− ρ2

We can compute the matrix square root to derive β̂GLS . Specifically we compute Ω−1 and factor it
into Ω−1 = H ′H where

H =



√
1− ρ2 0 0 0 ..... 0
−ρ 1 0 0 ..... 0
0 −ρ 1 0 . 0
. . . 1 . 0
. . . . 0
0 0 ..... 0 −ρ 1


The transformed model thus uses y∗t = Hyt and x∗t = Hxt, which expanded out is:

y∗1 =
√

1− ρ2y1, x∗1 =
√

1− ρ2x1

y∗t = yt − ρyt−1, x∗t = xt − ρxt−1 for t = 2,...T

Accordingly except for the first observation, this regression is known as ’generalzed difference.’

5.2 Testing for Serial Correlation
If ρ 6= 0 in the AR(1) model, then there is serial correlation. If we fail to the null hypothesis:
H0 : ρ = 0, the model reduces to the classical regression model. We assume that ε0 equals zero so
the sums start in t=1. This assumption is not necessary, but it helps some of the calculations.

Recall from the time series exercise done in section that an ordinary least squares estimate of ρ is:
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ρ̃ =

∑T
t=1 εtεt−1∑T
t=1 ε

2
t−1

This estimator can be rewritten to compute its limiting distribution:

√
T (ρ̃− ρ) =

√
T 1
T

∑T
t=1 εt−1ut

1
T

∑T
t=1 ε

2
t−1

Recall the limiting distributions for the numerator and denominator:

√
T

1

T

T∑
t=1

εt−1ut −→d N(0,
σ4

1− ρ2
)

1

T

T∑
t=1

ε2
t−1 −→p

σ2

1− ρ2

Thus by Slutsky’s Theorem:

√
T (ρ̃− ρ) =

√
T 1
T

∑T
t=1 εt−1ut

1
T

∑T
t=1 ε

2
t−1

−→d N

0,

σ4

1−ρ2(
σ2

1−ρ2

)2

 = N(0, 1− ρ2)

The problem with this estimator, however, is that we do not know εt so we cannot calculate ρ̃.
However, we can express the least squares residual, et as:

et = εt + x′t(β − β̂)

Because β̂ depends on T, we can rewrite et as et,T , where et,T −→p
T→∞

εt. As a result, we can use

probability theorems to show that
∑T

t=1 etet−1∑T
t=1 e

2
t−1

−
∑T

t=1 εt−1εt∑T
t=1 ε

2
t−1

−→p 0 as T →∞.
Accordingly, an asymptotically equivalent estimator based on the least squares residuals is:

ρ̂ =

∑T
t=1 etet−1∑T
t=1 e

2
t−1

√
T (ρ̂− ρ) −→d N(0, 1− ρ2)

Under the null hypothesis,

√
T ρ̂ −→d N(0, 1)

Thus, this test statistic implies rejecting the null hypothesis if
√
T ρ̂ exceeds the upper α critical

value z(α) of a standard normal distribution.
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Table 2: Summary of Tests for Serial Correlation
Name Expression Distribution Comment

under the null

Breusch-Godfrey T = NR2 χ2
p Higher serial corr.

and lagged dep var
usual test

√
T ρ̂ N (0, 1) also chi-square T ρ̂2

Durbin-Watson DW =
∑T

t=2(êt−êt−1)2∑T
t=1 ê

2
t

DW normal approximation

Durbin’s h
√
T ρ̂√

1−T ·[SE(β̂1)]2
N (0, 1) Lagged dep. variable

T · [SE(β̂1)]2 < 1

Other tests exist, and they have specific characteristics that you should study in Professor Powell’s
notes. Here is a table that summarizes these tests.

In Table 2 the tests are ranked in decreasing order of generality. For instance, Breusch-Godfrey
is general in the sense that we can test serial correlation of order p, and the test can be used with
lagged dependent variable. The usual test and Durbin Watson allow us to test first order serial
correlation, but recall that Durbin Watson has an inconclusive region. The usual test statistic is
straight forward, and it can also be used against a two-sided alternative hypothesis whereas DW
has exact critical values that depend on X. Durbin’s h is useful for testing in the presence of lagged
dependent variable. With lagged dependent variables,

√
T ρ̂ has a distribution that is more tightly

distributed around zero than a standard normal, thus making it more difficult to reject the null.

5.3 Feasible GLS
After determining that there is indeed serial correlation, we can construct a feasible GLS estimator.
Professor Powell presented 5 methods of constructing such an estimator that you should known
insofar as he they were discussed in lecture:

i) Prais-Winsten

ii) Cochrane-Orcutt

iii) Durbin’s method

iv) Hildreth-Liu

v) MLE
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Professor Powell also briefly discussed how to generalize FGLS construction to the case of AR(p)
serially correlated errors.

As with heteroskedasticity, if the form of serial correlation is correctly specified, then these ap-
proaches give us estimators of β and ρ with the same asymptotic properties as β̂GLS .

5.4 Exercises
As with heteroskedasticity, serial correlation has appeared regularly on exams. However, it has
only appeared in the True and False section.

5.4.1 2002 Exam, Question 1C

Note that a nearly identical question appeared in the 2005 Exam.

Question: In the regression model with first-order serially correlated errors and fixed (nonrandom)
regressors, E(yt) = x′tβ, V ar(yt) = σ2

1−ρ2 , and Cov(yt, yt−1) = ρσ2

1−ρ2 . So if the sample correla-
tion of the dependent variable yt with its lagged value yt−1 exceeds 1.96√

T
in magnitude, we should

reject the null hypothesis of no serial correlation, and should either estimate β and its asymptotic
covariance matrix by FGLS or some other efficient method or replace the usual estimator of the
LS covariance matrix by the Newey-West estimator (or some variant of it).

Answer: False. The statement would be correct if the phrase, ”...sample correlation of the depen-
dent variable yt with its lagged value yt−1” were replaced with ”...sample correlation of the least
squares residual et = yt − x′tβ̂LS with its lagged value et−1...”. While the population autocvoari-
ance of yt is the same as that for the errors εt = yt − x′tβ because the regressors are assumed
nonrandom, the sample autocovaraince of yt will involve both the sample autocovariance of the
residuals et and the sample autocovariance of the fitted values ŷ = x′tβ̂LS , which will generally be
nonzero, depending upon the particular values of the regressors.

5.4.2 2003 Exam, Question 1B

Question: In the linear model yt = x′tβ + εt, if the conditional covariances of the errors terms, εt
have the mixed heteroskedastic/autocorrelated form

Cov(εt, εs|X) = ρ|t−s|
√
x′tθ
√
x′sθ

(where it is assumed x′tθ > 0 with probability one), the parameters of the covariance matrix can be
estimated in a multi-step procedure, first regressing least-squares residuals et = yt−x′tβ̂LS on their
lagged values et−1 to estimate ρ, then regressing the squared generalized differenced residuals û2

t

(where ût = et − ρ̂et−1) on xt to estimate the θ coefficients.

Answer: False. Assuming xt is stationary and E[εt|X] = 0, the probability limit of the LS regres-
sion of et on et−1 will be
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ρ∗ =
Cov(εt, εt−1)

V ar(εt−1)

=
E[Cov(εt, εt−1)] + Cov[E(εt|X), E(εt−1|X)]

E[V ar(εt−1)] + V ar[E(εt|X)]

=
E[Cov(εt, εt−1)]

E[V ar(εt−1)]

=
E[ρ
√

(x′tθ)
√

(x′sθ)]

E[(x′tθ)]

6= ρ

in general. Note that the second line uses the conditional variance identity (See Casella and Berger,
p. 167). The remaining substitutions use stationary and the expression given in the question about
the conditional covariance of the errors.

To make this statement correct, we must reverse the order of autocorrelation and heteroskedasticity
corrections. First, since

Cov(εt, εt|X) = ρ|t−t|
√
x′tθ
√
x′tθ = x′tθ

we could regress ε2
t on xt to estimate θ or, since εt is unobserved, regress e2

t on xt (à la Breusch-
Pagan). Given θ̂, we can reweight the residuals to form ût = et/

√
x′tθ. Since Cov(ut, ut−1|X) =

ρ, a least squares regression of ût on ût−1 will consistently estimate ρ (as long as the least squares
residuals et are consistent for the true errors εt).

5.4.3 2004 Exam, Question 1B

Question: In the linear model with a lagged dependent variable, yt = x′tβ+γyt−1 +εt, suppose the
error terms have first-order serial correlation, i.e., εt = ρεt−1 + ut, where ut is an i.i.d. sequence
with zero mean, variance σ2, and is independent of xs for all t and s. For this model, the classical
LS estimators will be inconsistent for β and γ, but Aitken’s GLS estimator (for a known Ω matrix)
will consistently estimate these parameters.

Answer: True. While the classical LS estimators of β and γ are indeed inconsistent because of the
covariance between yt−1 and εt, the GLS estimator, with the correct value of ρ, will be consistent.
Apart from the first observation (which would not make a difference in large samples), the GLS
estimator is LS applied to the ’generalized differenced’ regression:

y∗t = yt − ρyt−1

= (xt − ρxt−1)′β + γ(yt−1 − ρyt−2) + (εt − ρεt−1)

= x∗t
′β + γy∗t−1 + ut
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But because ut = εt − ρεt−1 is i.i.d., it will be independent of x∗t and y∗t−1 = yt−1 − ρyt−2, so
E[ut|x∗t , y∗t−1] = 0, as needed for consistency. So the problem with feasible GLS with lagged
dependent variables isn’t consistency of the estimators of β and γ with a consistent estimator of
ρ, but rather it is the difficulty of getting a consistent estimator of ρ, since the usual least squares
residuals invovle inconsistent estimators of the regression coefficients

6 Nonstructural Approach to Serial Correlation
A handful of robust estimators have been proposed in the style of Eicker-White to account for serial
correlation. That is, we can use β̂OLS = (X ′X)−1X ′y and adjust the standard errors to obtain a
consistent estimator that accounts for possible serial correlation. Such methods do not require the
structure of the serial correlation to be known, and have similar advantages and disadvantages to
Eicker-White. The key advantage is that we can use β̂OLS and do not need to assume a form for the
variance-covariance matrix. However the estimator does not perform very well in small samples,
and some macroeconomists prefer to use FGLS in small samples if they have good reason to argue
a structural for the standard errors (eg. C. Hsieh and C. Romer, 2006).

Recall that β̂OLS is inefficient if there is serial correlation, but still consistent and approximately
normally distributed with

√
T (β̂LS − β) −→d N (0, D−1V D−1)

where
D = plim

1

T
X ′X, and V = plim

1

T
X ′ΣX

and Σ = E[εε′|X]. Since we have a consistent estimator of D, say D̂ = X ′X/T , we just need to
get a consistent estimator for V. One popular nonparametric choice is the Newey-West estimator
which is consistent:

V̂ = Γ̂0 +
M∑
j=1

(1− j

M
)(Γ̂j + Γ̂′j)

where Γ̂ = T−1
∑T

t=j+1 êtêt−jxtx
′
t−j and M is the bandwidth parameter. This parameter is impor-

tant because we weigh down autocovariances near this threshold and we have a positive semidefi-
nite matrix V. Some technical requirements are that M = M(T )→∞, M/T 1/3 → 0 as T →∞.
The proof for Newey-West is beyond the scope of the course, and you should be familiar with its
existence, purpose, and vaguely its construction.
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1 Section Preamble
In this section we complete our discussion of the generalized regression model and GLS estimation
for a class of panel data models. We will then relax our last assumption of linear expectations. We
first introduce the panel data model, which is when we observe a cross-section in multiple time
periods; this cross-section can be individuals, geographic units, or firms. Many empirical microe-
conomics papers estimate panel data models, and it is an active topic of econometric research. We
also study panel data because for random effects models, a class of panel data models, we can
construct a feasible GLS estimator that can be asymptotically equivalent to β̂GLS . The model thus
fits well with the theme of relaxing the spherical covariance assumption.
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We will then return to the classical regression model and discuss endogenous regressors for the
rest of Professor Powell’s part of 240B. The final assumption to relax is the linear expectations
assumption that E(y) = Xβ ⇒ E(ε) = 0⇒ E(ε|X) = 0.

This assumption implies that E(X ′ε) = 0 by the law of iterated expectations:

E(X ′ε) = E(E(X ′ε|X)) = E(X ′E(ε|X) = E(X ′0) = 0

As a result E(X ′ε) 6= 0⇒ E(ε|X) 6= 0.

Per usual, we ask the two questions associated with relaxing an assumption:

1. What happens to the classical model if we relax E(X ′ε) = 0?

As we will show β is no longer identified because it cannot be written as a function of population
moments with sample moment counterparts. Not surprisingly β̂OLS is no longer unbiased nor con-
sistent. As with β̂OLS in the generalized regression model , an inconsistent estimator is incredibly
problematic because we want to get closer to the true parameter if we collect more data. Clive
Granger, a Nobel Laureate econometrician, once remarked, ”If you can’t get it right as n goes to
infinity, you should not be in this business.”

2. How can we solve this problem?

We need to find an instrumental variable for the regressors that are preventing it from being zero.
With a valid instrument then we can identify β and construct an estimator that is unbiased, consis-
tent, and asymptotically normal. We conclude that we have a good instrument, Z, if it is [highly]
correlated with the variable it is instrumenting for, X , and is uncorrelated with all remaining un-
observable characteristics that affect Y , which are captured by ε. For identification we require that
Z contains at least as many variables as we seeks to instrument in X. Moreover our instrumental
variable matrix must contain at least as many variables as parameters in our original model so we
usually include all of the other exogenous variables from our original model. In some models we
can deduce a valid instrument from our data. However in most applications, it is necessary to
collect more data about a new variable to argue for the validity of an instrument. As is seen in the
empirical literature, an economist must often motivate intuitively that Cov(Z, ε) = 0 by showing
that the instrument is not correlated with any of the hypothetical components of the error term.
Just like with the nature of hypothesis testing, it may not be possible to prove that an instrument is
valid but it is possible to reject the validity of an instrument by arguing that an unobserved variable
is correlated with the instrument.

2 Panel Data Models
Panel data models are those in which we have data about a cross-section over a set of time periods.
The panel is balanced if there is data for the same cross-section in each time period of the sample.
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Although this set-up resembles a SUR model for multiple time periods, we will show that the
stacking occurs differently for panel data models.

The general framework for the panel data model is:

yit = x′itβ + αi + εit, i = 1, ..., N ; t = 1, ..., T

where we assume E(εit|X) = E(εit) = 0, V ar(εit) = σ2
ε and Cov(εit, εjs) = 0 if i 6= j and t 6= s.

i tracks the cross-sectional units, and t tracks time periods.

Stacking observations for each individual over time and then across individuals yields:

y = Xβ +Dα + ε

where y is a NTx1 vector, X is a NTxK matrix, D is a NTxN matrix with T NxN vertically
stacked identity matrices. As Professor Powell proved in lecture, X does not include an intercept
because if it did, [X,D] would not be full column rank.
αi is our vector of individual-level fixed effects that capture all time-invariant characteristics for
individual i. These characteristics are all characteristics that do not vary over time – both observed
and unobserved to the econometrician. By unobserved, we mean that they are unobserved to the
econometrician, or in other words, we do not have reliable data to measure these relevant variables.
Accordingly we would no longer explicitly control for the observed time-invariant characteristics.

For example Hausman and Taylor (1981) analyze the returns to education with the PSID panel data.
We would want to include regressors like schooling and unemployment rate, which are included
in the data. We would also like to account for characteristics like charisma, motivation, and IQ,
but we do not have measures for such in our data set and are arguably difficult to measure reliably.
Assuming that they are time-invariant, then if we include them in our model as individual fixed
effects then we should also not include observable time-invariant variables like gender that would
be multicolinear with the fixed effects matrix.

Accordingly our error term, εit, includes all individual-year shocks, in addition to individual-
invariant shocks for each year in the absence of time fixed effects. Note that we could include
time fixed effects if we believed these were more appropriate for our model; we could also include
both individual fixed effects and time fixed effects.

If we were to generalize to a larger panel that say indexes individuals various geographic regions
over multiplie time periods we could have 6 different types of fixed effects. The only requirement
is that we must leave some shocks in the error term, so including both individual and year fixed
effects leaves the individual-time shocks in our model. We choose not to account for these shocks
because it is more sensible to motivate the individual or year fixed effects.
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2.1 Fixed Effects Model
We allow for an arbitrary relationship between αi and xi where αi = z∗

′
i δ. z

∗
i are the collection of

time-invariant variables. We do not necessarily care about δ or in fact know all of the variables that
belong in z, but we want our estimator to account for these characteristics; otherwise we would
not satisfy the linear expectations assumption. This model is effectively an OLS regression with
our controls, xi and N binary variables – one for each unit of observation that equals 1 if it is the
variable for individual i and 0 otherwise.

The fixed effects (FE) or within (W) or least squares dummy variable (DV) estimator for β can
be obtained by partitioned regression. We do so because are not directly interested in the effects
of the remaining variables but must control for them in our model. In our application, the second
set of variables are the fixed effects that are relevant for properly specifying the model but not are
directly meaningful because we do not observe any of them.

Accordingly applying the expression of the Frish-Waugh Theorem:

β̂FE = (X̃ ′X̃)−1X̃ ′ỹ

where X̃ = (INT −D(D′D)−1D′)X and ỹ = (INT −D(D′D)−1D′)y which are the residuals of
the regression of X on D and Y on D respectively.

Note that X̃ ′ is, 
X1 − lT (T−1

∑T
t=1 x1t)

.

.

XN − lT (T−1
∑T

t=1 xNt)

 =


X1 − lTx1.

.

.
XN − lTxN.


Writing these expressions in summation notation yields:

β̂DV = β̂FE = β̂W = [
N∑
i=1

T∑
t=1

(xit − xi.)(xit − xi.)′]−1

N∑
i=1

T∑
t=1

(xit − xi.)(yit − yi.)

As Professor Powell presented in lecture, these two estimators come from reexpressing our model
such that the individual fixed effects drop from the regression. Such estimation is the spirit of our
partitioned regression estimator.

Note that the difference-in-differences framework can be viewed as a special case of the fixed
effects model. In the baseline case, we have two groups, control and treatment, and two time
periods of data, pre-treatment and post-treatment. We allow for there to be individual and time
fixed effects. We take first-differences and then run the regression. In doing so, individual fixed
effects drop because they are constant for all individuals in both periods. Also with only one
control – the presence of being in the treatment group – this variable reduces to 0 for the control
and 1 for treatment. The least squares estimator that comes from this framework is the difference
between treatment and control of the difference in y over each time period for both groups.
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Finally we estimate σ2 with our usual degrees of freedom adjusted estimate s2. In doing so we have
NT observations and must account for K + N degrees of freedom to represent our K regressors
and our fixed effects variables for N units. This estimator is both unbiased and consistent.

2.2 Random Effects Model
The fixed effects model fails to identify any components of β that correspond to regressors that
constant over time for a given individual. Moreover Professor Powell presented in class that ˆαOLS
is not consistent in the panel data model. For this model to yield a consistent estimator, αi must be
uncorrelated with xit. Accordingly we treat the α’s as random variables and assume the following
in a random effects model:

• yit = x′itβ + αi + εi

• αi is independent of εit

• αi is independent of xit and

• E(αi) = α, V ar(αi) = σ2
α, Cov(αi, αj) = 0 if i 6= j.

We can then rewrite the model as:

yit = x′itβ + αi + εi
= x′itβ + α + uit

where uit = εit + (αi − α) and E(uit) = 0, V ar(uit) = σ2
ε + σ2

α, Cov(uit, ujs) = 0 if i 6= j, and
Cov(uit, uis) = σ2

α.

Stacking the model we have,
y = Xβ + αlNT + u

which produces a non-spherical variance-covariance matrix for each individual:

V ar(ui) =


σ2
ε + σ2

α σ2
α ... σ2

α

σ2
α σ2

ε + σ2
α ... σ2

α

. . . .
σ2
α . .. σ2

ε + σ2
α


TxT

and
V ar(u) = σ2

ε INT + σ2
α(IN ⊗ lT l′T )

The least squares estimate of the RE model can be found using Frisch-Waugh theorem again:

β̂LS = (X∗
′
X∗)−1X∗

′
y∗

where X∗ = (INT − lNT (l′NT lNT )−1l′NT )X and y∗ = (INT − lNT (l′NT lNT )−1l′NT )y which are the
residuals of the regression of X on lNT and Y on lNT respectively.
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Expanding this estimator gives the the following representation in summation:

β̂LS = [
N∑
i=1

T∑
t=1

(xit − x..)(xit − x..)′]−1

N∑
i=1

T∑
t=1

(xit − x..)(yit − y..)

where x.. is the grand mean, i.e. the average of xit over i and t. This estimator is unbiased and
consistent but inefficient though.

We know that GLS is efficient relative OLS. We call it the GLS Random Effects Estimator, which
is given by:

(β̂GLS, α̂GLS)′ = (Z ′Ω−1(θ)Z)−1Z ′Ω−1(θ)y

where X = [lNTX] , Ω(θ) = INT + θ(IN ⊗ lT l′T ) and θ = σ2
α/σ

2
ε

It can be shown that the GLS or RE estimator is a matrix-weighted average between the within and
the between groups estimators:

β̂RE = A(w0)β̂FE + [IK − A(w0)]β̂B

where β̂B is the between estimator that captures variation only between groups since there is none
within groups:

β̂B = [
N∑
i=1

(xi. − x..)(xi. − x..)′]−1

N∑
i=1

(xi. − x..)(yi. − y..)

As T −→∞ and N is fixed, it can be proved that A(w0) −→ IK , hence FE and RE are asymptoti-
cally equivalent. See section 24.9 for more detail.

It should be clear that we have the usual problems with hypothesis testing since in practice we do
not observe our error terms, let alone anything about their variances. Fixed effects models can be
relaxed so that they are written with variance-covariance matrices that are purely heteroskedastic.
In that case, we would want to use heteroskedastic-robust consistent standard errors based on
Eicker-White. Similarly if we do not know the elements of the variance-covariance matrix for
random effects, then we must construct a feasible estimator; Professor Powell presented a feasible
estimator in his lecture.

One final note is that not all models lend themselves to random effects estimation. For example
in the Hausman and Taylor returns to education example, education attainment is likely correlated
with some of the factors in the fixed effect, such as ability. In that case we fail to satisfy the
assumption that αi is independent of xit.
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2.3 2004 Exam, 1C
Professor Powell acknowledges that ”this is a tricky problem” and that he initially had an incorrect
answer in mind when making up the question.

Question: For a balanced panel data regression model with random individual effects, yit = x′itβ+
αi+εit (where the αi are independent of εit, and all error terms have mean zero, constant variance,
and are serially independent across i and t), suppose that only the number of time periods T tends
to infinity, wile the number of individuals N stays fixed. The the ”fixed effect” estimator for β will
be consistent as T −→ ∞, but the ”random effects” GLS estimator is infeasible, since the joint
covariance matrix of the error terms is not consistently estimable.

Answer: False. It is true that the joint covariance matrix of the error terms is not consistently
estimable - specifically σ2

α isn’t estimable because there are only N realizations of αi available in
the sample, and N is fixed - but this does not mean GLS is either ”infeasible” or inconsistent. It is
also true that the ”fixed effect” estimator βFE is consistent; as in Ruud’s text, the FGLS estimator
can be written as a matrix-weighted average of the fixed-effect and ”between” estimators, where
the latter is inconsistent (being based upon only N time averages). However, inspection of the
weight matrices for the FGLS estimator reveals that the weight on the ”between” estimator goes
to zero, and the corresponding weight on ”fixed effects” goes to the identity matrix, as T −→ ∞.
Moreover, it can be shown that FGLS and ”fixed effects” are asymptotically equivalent,

√
T (β̂FGLS − β̂RE) −→p 0

under the usual conditions on the regressors, etc. So, at least as T −→∞, FGLS behaves just like
the fixed effect estimator for β, and is consistent.

2.4 2006 Exam, 1B
Question: Suppose that, for the population of firms in the U.S., the relationship over time between
dividends and some observable regressors (which include firm size) follows the assumptions of the
Classical Normal Linear Regression model, conditional on the realized values of the regressors.
Rather than a random sample of firms over time, though, suppose only that a sample of T average
values of dividends and the regressors are available for the Fortune 500 largest firms. Using this
sample, the Classical Least Squares estimators of the regression coefficients will be efficient, and
F-tests using the usual normal-theory for the linear regression model will have correct size.

Answer: True. Denote our linear model of firms as yit = x′itβ + εit where εit ∼ N(0, σ2) are i.i.d
and independent of xit

However instead of observations for each firm i in each year t we have averages of the 500 firms
for each year. We thus estimate y.t = x′.tβ + ε.t where y.t = 1

500

∑500
i=1 yit for t = 1, 2, ..., T

If this model still satisfies the Gauss-Markov assumptions then the classical least squares estimators
of the regression coefficients will be efficient. Moreover if the errors are normally distributed then
the F-tests will have the correct size.
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ε.t = 1
500

∑500
i=1 εit ∼ 1

500
N(0, σ2) = N(0, σ2

5002 ) for t = 1, 2, ..., T . ε.t are still independent over t
and independent of x.t.

As a result this linear model still satisfies the Gauss-Markov assumptions as well as the normality
assumption. Therefore, the results of the classical normal regression model are applicable and the
statement is true.

3 OLS problems with endogeneity
In the remainder of Professor Powell’s part of 240B we analyze endogenous regressors and relax
the linear expectations assumption and allow E(X ′ε) 6= 0. In the endogenous regressor linear
model β is no longer identified. Moreover β̂OLS is no longer unbiased nor consistent. We now
show these properties:

• Identification:

y = Xβ + ε

⇒ X ′y = X ′Xβ +X ′ε

⇒ E(X ′y) = E(X ′X)β + E(X ′ε)

⇒ β = E(X ′X)−1E(X ′y)− E(X ′X)−1E(X ′ε)

E(X ′ε) is not a population moment that has a sample counterpart because ε is unobserved.
Thus β is no longer identified because it cannot be written as population moments that have
sample moment counterparts.

• Bias:

E(β̂OLS|X) = E((X ′X)−1X ′y|X)

= (X ′X)−1X ′E(y|X)

= β + (X ′X)−1X ′E(ε|X)

The model implies that E(ε|X) 6= 0⇒ E(β̂OLS|X) 6= β. β̂OLS is thus biased in this model.

• Inconsistency:

β̂ = β + (X ′X)−1X ′ε −→p β +

(
plim

X ′X

n

)−1

plim
X ′ε

n

Recall that in the classical regression model that β̂OLS −→p β because plimX′ε
n

= E(X ′ε) =
0. Because it is no longer 0, the OLS estimator does not converge to β.
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3.1 Motivation and Examples
In social science research one should often be suspicious of whether this assumption is satisfied.
We can only be completely certain that we have avoided this problem in a laboratory experiment
where the scientist can randomly assign the treatment to a representative sample and then isolate
the experiment from all external influences. If the two groups are identical before the treatment
then by isolating the experiment we can attribute any difference in the treatment group after the
experiment to the treatment.

For instance, a biologist can put two groups of bacteria in the same environment, and change the
amount of oxygen in one group. If more bacteria grow in the group with more oxygen, then we
can conclude that this additional amount of oxygen causes the differential bacteria growth. If we
repeat this experiment many times then we can see if we consistently obtain the same results.

A physician can get really close to experimental results in a double blind experiment. Suppose
the doctor randomly assigns pills to some patients and a placebo to others and neither the patients
nor the physician know who is taking what. We can thus expect the groups to be the same on
average and that the only difference in the medicine intake since there are no external factors
affecting either group once the experiment begins. On the other hand one can argue that this study
will likely not have a large sample size to assure that randomization created two nearly identical
groups. Such experiments can be expensive, and since individuals must choose to participate it is
also questionable the extent to which the sample is representative of the target population.

If we were to estimate the treatment effect with OLS in the model:

yi = xiβ + εi

where x is a binary variable for having taken the medicine instead of the placebo, and y is the result
of a certain health exam, then β is the effect of the treatment in the health exam if the experiment
is ideally run. Of course if we think that some observable characteristics such as age also affect
the outcome, then we should explicitly control for such characteristics and compute our average
treatment effect through partitioned regression.

However in the social sciences field experiments are rarely done because they are costly and raise
ethical concerns when randomly assigning a resource to human beings. Moreover it is difficult to
assure a controlled environment that is free of external influence. For starters, the researcher can-
not involve humans in an experiment without them knowing they are receiving a benefit. Known
as the Hawthoren Effect, a subject may temporarily modify his behavior in response to a change
in the environmental conditions of the experiment. More generally it may be difficult to control
for external influences and spillover effects since we are not isolating people as in a science exper-
iment; for example the treatment may improve the treatment group, which might have a positive
spillover effect on the control group.

Our experimental model will suffer from endogeneity if after the experiment begins, the control
group is affected by anything related to the treatment or the treatment group is affected by anything
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other than the experiment. We are not concerned if the outcome for either group is affected by pre-
experimental characteristics; we can control for these characteristics and attribute the remainder
of the outcome to the treatment in the ideal experiment. A good way to check that our treatment
effect is not absorbing the results of a pre-experimental characteristic is to make sure that on the
aggregate level pre-experimental characteristics are nearly identical between the two groups. If
there are any striking diffrences between the groups then we have not done a good job randomly
assigning the treatment since it would be a valid argument that the treatment effect is partially
picking up such differences between the two groups.

In the absence of field experiments we look for naturally occuring instances that effectively create
randomly assigned treatments. This setting is known as a natural experiment, and the researcher
must argue that the treatment is not confounded by unobserved factors. Often such arguments are
made in the social sciences in response to policy changes. A classic example is David Card and
Alan Krueger’s (1994) study of how minimum wage affects employment in the fast-food industry.
They compare employment in the industry between New Jersey and Pennsylvania and exploit
a minimum wage increase in NJ in 1992 as a natural experiment. They control for a host of
observable characteristics, such as the unemployment rate, and argue that the difference between
employment between the two states after the legislation can be attributed to the legislation. Meyer
(1995) outlines the application of natural experiments in the empirical literature.

Most observational studies however do not lend themselves to a natural experiment that can be an-
alyzed by OLS. For example a classic question in labor economics about the returns to education
is difficult to assess because of omitted variables bias and measurement error (Card, 2001). If we
regress earnings on education then we can argue that we have an endogenous regressor because
ability, an omitted variable because it is unobserved to the econometrician, affects both educa-
tion and earnings. Moreover it is not unusual that survey respondants misreport their education.
Likewise the classic question in macroeconomics of why some countries grow faster than others
is plagued by omitted variables bias, measurement error, and simultaneity (Acemoglu, Johnson,
and Robinson, 2005). They argue for example that institutions are an important determinant of
economic growth, but a growing economy likely develops better institutions.

Professor Powell will discuss some classical situations such as these that present endogeneity.
Although some of them have a standard solution, others require a creative solution. The four most
problematic cases are:

1. Lagged dependent variable and Serial correlation

2. Omitted Variables

3. Measurement error

4. Simultaneous Equations

All of the solutions require finding an instrumental variable, and performing an Instrumental Vari-
able Regression (IV), a Two Stage Least Squares Regression (2SLS), or a Generalized Method of
Moments regression (GMM) as appropriate.
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4 Instrumental Variables
The solution to endogenous regressors is to change transform the model so β identifiable. We do
so with an ”instrument”, a set of variables which we will refer to as Z. The amount of instruments
that we have affects our method of estimation.

We must satisfy two conditions about Z to consider it a valid instrument:

1. Z must be uncorrelated with ε: E(Z ′ε) = 0.

2. Z must be correlated withX , and preferably, this correlation is as high as possible: E(Z ′X) 6=
0. If were to regress x – the variable we must instrument – on z – our instrumental variables
for x – and any other control variable:

xi = α0 + α1w1i + · · ·+ αpwpi + z′iγ + vi

γ must be statiatically different from 0. In this regression, we assume the classical linear
assumptions wherein E(vi) = 0, V ar(vi) = σ2

v , and full row rank regressors.

If Z satisfies these conditions then it will solve the identification problem because we can β as a
function of population moments that have corresponding sample counterparts:

Y = Xβ + ε

Z ′Y = Z ′Xβ + Z ′ε

E(Z ′Y ) = E(Z ′X)β + E(Z ′ε)

E(Z ′Y ) = E(Z ′X)β

⇒E(Z ′(Y −X ′β)) = 0

⇒E(Z ′ε) = 0

The caveat is that dim(Z) ≥ dim(X) to identify the K parameters of β. If dim(Z) = K then
we have K equations with K unknowns and it is clear that we could identify β if the instrument is
valid. We cover this case in this section.

4.1 Motivation and Examples
Finding an instrument is not usually easy because it is often not something that can be derived
mathematically since we do not observe ε. Instead with omitted variables, for instance, the re-
searcher must be creative and argue that E(Z ′ε) = 0. Often in the empirical literature, the contri-
bution is the instrumental variable strategy since convincing instruments are difficult to come by.
Accordingly a significant part of the paper is devoted to motivating the instrument, and then de-
fending that it is not correlated with possible components of the error term. The latter is known as
the robustness checks; if someone has any doubt about the lack of correlation then the instrument
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is no longer valid. Moreover we want an instrument that is not weakly correlated with regressors
though this condition is straightforward to from a least squares regression of X on Z because both
are data.

The classic instrumental variables example in an observational study is Josh Angrist’s (1990) re-
search on the effect of having served in the Vietnam War on one’s lifetime income. In this case the
treatment is going to war while the control is not going; there is no doubt that the latent decision
is not random. If we find that people that went to war are poorer in the future, it can be because
of war but also because the people who went to war were less prepared for the labor market in
the first place. Why might they have enlisted? Some of them could have done so because they
could not find another job, or because the payment in the army is better than what they would get
otherwise. Also, there is considerable government support for veterans, which could have influ-
enced the decision to enlist. Accordingly it is not clear a prior whether the loss of labor market
experience outweighs the post-war benefits.

Consider the regression:

yi = xiβ + εi

where yi is income, xi is a binary variable of having gone to war.

Is xi uncorrelated with εi? Hardly, because there are plenty of things that are correlated with
earnings that are also correlated with the decision of enlisting. The error is everything that affects
earnings (yi) other than having served in the war (xi), and a person’s earnings are of course not
only determined by having been in a war. They are determined by other things such as education,
ability, experience, personal networks, appearance, race, and so forth. We then ask whether these
factors are correlated with xi, having served in war? Quite likely. For instance, a less educated
person will earn less in average than a more educated one, and also a less educated person is
more likely to enlist, because the army is a good job that pays better than working in say pizza
delivery and earns more respect. In this case, β̂OLS will not only reflect the exact effect of going to
war in earnings, but also the effect of education in earnings through going to war as seen by the
identifiability math.

However we could control for education, health, parents’ education, work experience, and all
other relevant observable characteristics that are relevant to both income and serving in the war.
The regression would be:

yi = α0 + α1w1i + · · ·+ αpwpi + βxi + εi

where the each w′i is our vector of control variables. If we do OLS by partitioned regression, β̂OLS
would be the effect of going to war on income, controlling for the effect of each w′i. However
some variable could still be missing from the data set, or worse unobservable. That is, there could
still be something in individuals that enlist that makes them earn systematically less in the future.
It could be a psychological characteristic, such as ability or motivation. If so we would still have
endogeneity, and we would not be able to identify β through OLS.
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Fortunately for Angrist’s research there was a moment during the Vietnam era when the govern-
ment needed people to enlist and voluntary enlistment was not covering the demand for soldiers.
Accordingly the government instituted compulsory enlistment, which at that time meant going to
war provided one passed certain physical and mental requirements. All of the men in a certain age
range were randomly assigned a lottery number. Then the army would call starting from the lowest
number and going up until it satisfied its demand. Because the number was absolutely random, a
person being called for war did not depend on any social, psychological or economic characteris-
tics, in such a way that those who stayed were on average similar to the ones who ended up going
to war 1

Angrist thus exploits the person’s number in the lottery draft as an instrument. 2

Let’s see if the instrument satisfies the two requirements:

• E(ziεi) = 0? The lottery number is randomly assigned so the number assigned must be
independent of any unobservable characteristic that could influence earnings. At least, we
will assume this to be the case for all practical purposes; as previously noted any doubt in
this argument must be motivated conceptually and would present the instrument from being
valid.

• E(zix
′
i) 6= 0? Although the correlation is not perfect, there is a huge increase in the proba-

bility of going to war if one’s lottery number is low; x and z are definitely correlated.

Instrumental variables has provoked very interesting discussions amongst empirical researchers,
at least in labor economics and economics history/economic growth, as well as in econometric
research. If the instrumental variable is not valid – usually, E(Z ′ε) 6= 0 – then the researcher
has not solved the problems that arise with OLS without the linear expectations hypothesis, that
is the lack of identification, consistency, and unbiasedness. In other words, the researcher does
not have an identification strategy for estimating β. Angrist’s paper is often cited as one of the
most convincing applications of instrumental variables because there is no better reason to argue
in favor of randomization in an observational study than one based on a lottery. Nevertheless some
are not convinced that E(zix

′
i) = 0. Without going into too many of the details, some economists

are more open to the use of instruments that require creativity because they do not require any
distributional assumptions about the error terms. However instrumental variables papers can be
controversial if researchers are not convinced that E(Z ′ε) = 0. And even if the instrument is valid,
inference may not be as convincing if the instrument is considered to be weak, which has been an

1I exaggerate to make a point. There were some problems with the lottery and people’s decisions to enlist because
those who had low numbers tended to enlist voluntarily before being called. However, even if the lottery number did
not absolutely determine one’s going or not to war, a lower number certainly meant a higher probability of going to war
on average. Angrist discusses all of this in the paper, but here we just want to understand the nature of an instrument,
so I’m taking some permissions.

2In the applied econometrics liteerature would argue that Angrist is identifying a local average treatment effect by
analyzing the effect of people who are induced to serve in the war only because of the lottery versus those who would
have served in the absence of the lotery. For this course we are not concerned about this interpretation though it is
something to keep in mind for empirical research.
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area of research amongst econometricians. Although this discussion may sound cynical, it is too
emphasize the difficulty in asserting causality in empirical economic research. At least in labor,
some alternative research designs such as the regression discontinuity design, have been developed
and recently somewhat widely applied, to assert causality at least locally in a population.

Although this class is not about the empirical literature, hopefully it is clear how prevalent
endogeneity is, how serious it is, and how difficult it is to convincingly solve. For these reasons it
is a highly important topic, and as we will shortly see there is quite a bit of math that we can do that
is within the scope of the course to analyze endogenous regressors. It should thus not be surprising
that instrumental variables has appeared on every recent exam, and as comprised as many as half
of the exam’s points.

5 Just-Identified IV Estimation
We say that are in the just-identifed case if the dimension of z is the same as the dimension of x
so that we have as many instrumental variables as we have endogenous regressors. We assure that
dim(Z) = dim(X) by making the remaining instrumental variables the remaining controls in X.
Because we assume that these controls are exogenous then they satsify the validity conditions of
being independent of the unobservables as a result of exogeneity and correlated with the regressors
by being regressors themselves. As a result rank(E(Z ′X)) = K. Moreover we assume that Z is
nonstochastic. Our identification equation translates to

β = E(Z ′X)−1E(Z ′Y )

and we estimate it by using sample moments:

β̂IV =

[
1

n

n∑
i=1

zix
′
i

]−1
1

n

n∑
i=1

ziyi = (Z ′X)−1Z ′Y

We now show that β̂IV is an unbiased estimator for β:

β̂IV = (Z ′X)−1Z ′(Xβ + ε)

= β + (Z ′X)−1Z ′ε

⇒ β̂IV − β = (Z ′X)−1Z ′ε

⇒ E(β̂IV − β) = E[(Z ′X)−1Z ′ε]

= Z ′X−1E(Z ′ε) = 0

5.1 Asymptotics for the IV estimator
We now return to our asymptotic calculations and modify them for our new estimator. We want
to demonstrate that our estimator is consistent and that we conduct hypothesis testing – at least in
large samples without assuming that our errors are normally distributed These two reasons are the
main motivation for why asymptotics is so important to this course. We are interested in these two
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asymptotic properties for each estimator we have discussed in Econ 240B, although for some the
math is beyond the scope of the course.
We β̂IV − β as

β̂IV − β = (Z ′X)−1Z ′ε = (
1

n

n∑
i=1

zixi)
−1 1

n

n∑
i=1

ziεi

As usual we treat each part separately so we can ultimately apply Slutsky’s Theorem:

1
n

∑n
i=1 zix

′
i:

Since we still have random sampling, the x′i and zi are iid and thus so is zix′i. Also assuming that
the second moments are finite, the weak law of large number states that:

1

n

n∑
i=1

zix
′
i −→p E(zx′)

1
n

∑n
i=1 ziεi:

Since the εi are iid3, so are the ziεi. Also assuming that E(z2
i ε

2
i ) is finite4, we can apply the weak

law of large numbers and the central limit theorem to obtain:

1

n

n∑
i=1

ziεi −→p E(zε) = 0

and

√
n

1

n

n∑
i=1

ziεi −→d N(0, E(z2ε2))

Convergence in probability implies convergence in distribution. Apply that to 1
n

∑n
i=1 ziεi −→p

E(zε) = 0. As a result of the Continuous Mapping Theorem and then Slutsky’s Theorem,

(
1

n

n∑
i=1

zixi)
−1 1

n

n∑
i=1

ziεi −→p 0⇒ β̂IV −→p β

and √
n(β̂IV − β) −→d N(0, E(zx′)−1E(z2ε2)E(xz′)−1)

Thus a pivotal statistic for hypothesis testing is

3Observe that we don’t have heteroskedasticity here since we’re only relaxing the linear expectations assumption.
4We only assumed zi and εi are uncorrelated. If we want to go further and assume independence, then E(z2

i ε
2
i ) =

E(z2
i )E(ε2i ) = σ2E(z2

i )
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√
n(β̂ − β)((

1
n

∑n
i=1 zix

′
i

)−1
V̂
(

1
n

∑n
i=1 xiz

′
i

)−1
)−1/2

−→d N(0, IK)

where V̂ is a consistent estimator of plim
(
Z′ΩZ
n

)
and Ω = E(εε′). The middle term is: s2In in

the homoskedasticity case. If we would like to relax the scalar covariance assumption however
then we could use Eicker-White, Diag(yi − xiβ̂IV ), for pure heteroskedasticity, and Newey-West
if there is also serial correlation.

Next week we will discuss the over-identified case and GMM estimation.
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1 Section Preamble
In this section we complete our discussion of endogeneous regressors by analyzing the over-
identified case, which lends to 2SLS and GMM estimation. Recall last week’s section preamble
for our motivation of endogenous regressors. Over-identifcation is the case in which we have more
instrumental variables than regressors, and thus dim(Z) > dim(X). We will then discuss a slew
of old exam questions on endogeneity.
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2 Overidentified case: 2SLS
When there are more instruments than regressors dim(Z) = L > K and (Z ′X) is no longer invert-
ible since it is not a square matrix. Estimating β in E(Z ′(Y −Xβ)) = 0 with sample counterparts
would reduce to more equations than unknowns, which can be problematic to solve. We could
throw away instruments so that we have only K instruments but it would be senseless to do so
since we can only improve our estimate with more instruments. Instead we solve the dimensional-
ity problem by premultiplying Z by Π̂ so rank(Π̂′Z ′X) = K and there are K equations. We thus
generalize β̂IV to β̂GIV which solves the sample counterpart of E(Π′Z ′(Y −Xβ)) = 0:

Π̂′Z ′Xβ̂GIV = Π̂′Z ′Y

⇒ β̂GIV = (Π̂′Z ′X)−1Π̂′Z ′Y

The traditional choice for Π comes from two stage least squares esimtation. We first regress X
on Z, the first stage, and then we regress Y on the predicted values of X given Z, the reduced
form equation. The first stage removes from X all of its correlation with ε, and the reduced form
analyzes how X affectes Y through Z.

More formally we compute β̂2SLS first by estimating Π in X = ZΠ + vi through OLS where
we assume that Z is exogenous. As a result Π̂ = (Z ′Z)−1Z ′X , and we obtain X̂ = ZΠ̂ =
Z(Z ′Z)−1Z ′X = PZX . Then we run the regression Y = X̂β + ε through OLS and obtain β̂,
which is our two stage least squares estimator:

β̂2SLS = (X̂ ′X̂)−1X̂ ′y

= (X ′P ′ZPZX)−1X ′PZy

= (X ′PZX)−1X ′PZy

= (X ′Z(Z ′Z)−1Z ′X)−1(X ′Z(Z ′Z)−1Z ′y)

In the case that dim(Z) = K we can show that β̂2SLS = β̂IV .

2.1 Properties of 2SLS Estimator
β̂2SLS is unbiased, consistent, and asymptotically normal because Π̂ −→p Π and is nonstochastic.
The derivations follow that of β̂IV .
We start by computing β̂2SLS − β:

β̂2SLS − β = (X ′PZX)−1X ′PZ(Xβ + ε)− β
= (X ′PZX)−1X ′PZε

= (
1

n

n∑
i=1

xiz
′
i(ziz

′
i)
−1zix

′
i)
−1(

1

n

n∑
i=1

xiz
′
i(ziz

′
i)
−1ziεi)
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β̂2SLS is unbiased and consistent because E(Z ′ε) = 0, as was used for our proof in β̂IV As a result
1
n

∑n
i=1 ziεi −→p 0, and the remaining terms converge in probability to finite nonzero moments.

Thus by Slutsky’s Theorem the entire expression converges in probability to zero.

Moreover by the Central Limit Theorem,
√
n 1
n

∑n
i=1 ziεi −→d N(0, V0).

Again we repeat the work of β̂IV to show that

√
n(β̂2SLS − β) −→d N

(
0, plim

((
X ′PZX

n

)−1
X ′PZ V̂ PZX

n

(
X ′PZX

n

)−1
))

We estimate V̂ based on our assumptions of the covariance matrix.

3 GMM
In the case that V0 6= σ2Mzz then β̂2SLS will not have the smallest asymptotic covariance matrix.
The asymptotic variance of βGIV is [Π′Mzx]

−1Π′V0Π[MxzΠ]−1 where 1
T
Z ′X −→p Mzx. In this

section we extend our two stage estimation to other possible matrices for Π̂.

We obtain an efficient estimator by choosing Π̂ that minimizes our estimate of this asymptotic
variance matrix. This problem is analogous to that of the generalized regression model where we
transformed the linear model to find the most efficient estimator.

As such we multiply the linear model by 1√
T
Z ′ so we are estimating 1√

T
Z ′y = 1√

T
Z ′X + 1√

T
Z ′ε.

We continue to assume that E[ziεi] = 0⇒ E[ 1√
T
Z ′ε] = 0.

As a result we can apply the Central Limit Theorem to show that 1√
T
Z ′ε −→d N(0, V0). More-

over, we can show that asymptotically this model satisfies the generalized regression assumptions,
particularly that asymptotically the covariance of the new design matrix with the new error vector
is zero.

Thus we use the GLS framework to define β̂GMM :

β̂GLS = ((
1√
T
Z ′X)′V −1

0

1√
T
Z ′X)−1(

1√
T
Z ′X)′V −1

0

1√
T
Z ′y

= [X ′ZV −1
0 Z ′X]−1X ′ZV −1

0 Z ′y

Accordingly π̂ = V −1
0 ( 1

T
Z ′X) where we need a consistent estimator of V0 through methods such

as Eicker-White or Newey-West.

Moreover we can use our GLS and 2SLS frameworks to derive
√
T (β̂GMM−β) −→d N(0, [MzxV

−1
0 Mxz]

−1).
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4 Endogeneity Exercises
Endogeneity has appeared on every exam since 2002 in both True/False and free-response ques-
tions! In fact recently it has tended to appear in multiple questions.

4.1 2002 Exam, 2
Question: Suppose the coefficients β = (β1, β2)

′ in the lienar model y = Xβ + ε are estimated by
two-stage least squares, where it is assumed that the errors ε are independent of the matrix Z of
instruments with scalar covariance matrix V ar(ε) = V ar(ε|Z) = σ2I . An analysis of N = 163
observations yields

β̂2SLS =

(
2
5

)
σ̂2

2SLS = 4, X̂ ′X̂ = (X ′Z)(Z ′Z)−1(Z ′X) =

(
5 1
1 1

)
Construct an approximate 95% confidence interval for γ = β1 ∗ β2, under the (possibly heroic)
assumption that the sample size is large enough for the usual limit theorems and linear approxima-
tions to be applicable. Is γ0 = 0 in this interval?

Answer: The sample size is sufficiently large that we can use the limiting distribution of β̂2SLS to
approximate our test statistic. Recall that β̂2SLS = (X̂ ′X̂)−1X̂ ′y where

V ar(β̂2SLS) = (X̂ ′X̂)−1X̂ ′V ar(y)X̂(X̂ ′X̂)−1

= (X̂ ′X̂)−1X̂ ′(σ2I)X̂(X̂ ′X̂)−1

= σ2(X̂ ′X̂)−1X̂ ′X̂(X̂ ′X̂)−1

= σ2(X̂ ′X̂)−1

Based on the usual least squares asymptotics,
√
N(β̂2SLS − β) −→d N(0, σ2 (X̂′X̂)−1

N
).

However, we are interested in the asymptotic distribution of γ = β1 ∗ β2 = g(β1, β2).
We thus use the Delta Method to show that

√
N(γ̂ − γ) −→d N(0, σ2G (X̂′X̂)−1

N
G′) where G =

∂g(β1,β2)
∂(β1,β2)′

= (β2, β1).

We estimate G with Ĝ = (β̂2, β̂1) because Ĝ −→p G.
Moreover we know that σ̂2 −→p σ

2 by law of large numbers.
We can thus apply Slutksy’s Theorem twice to show that

√
N(γ̂−γ)√

1
N
Ĝσ̂2(X̂′X̂)−1Ĝ′

−→d N(0, 1).

Equivalently (γ̂−γ)√
(β̂2,β̂1)σ̂2(X̂′X̂)−1(β̂2,β̂1)′

−→d N(0, 1) where V̂ = σ̂2(X̂ ′X̂)−1.

For these data, the estimate of γ is γ̂ = β̂1 ∗ β̂2 = 2 ∗ 5 = 10.

We now calculate the asymptotic standard error,
√
ĜV̂ (β̂2SLS)Ĝ′:
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V̂ (β̂2SLS) = σ̂2(X̂ ′X̂)−1

4 ∗
(

1

4

)(
1 −1
−1 5

)
=

(
1 −1
−1 5

)

ĜV̂ Ĝ′ =
(

5 2
)
∗
(

1 −1
−1 5

)
∗
(

5
2

)
=
(

3 5
)( 5

2

)
= 25

As a result, SE(γ̂) =
√

25 = 5.

Therefore, an approximate 95% confidence interval for γ is:
CI = (γ̂ ± 1.96 ∗ SE(γ̂)) = (10± 1.96 ∗ 5) = (10± 9.8) = (0.2, 19.8).
0 is not in this confidence interval.

4.2 2003 Exam, 1A
Question: True/False/Explain. The Two-Stage Least Squares estimator β̂2SLS is unchanged if the
original NXL matrix of instrumental variables Z is replaced by a new matrix Z* of instruments if
Z* = ZH, where H is an invertible L X L matrix.

Answer: True. The first stage projection matrix, PZ∗ = Z∗((Z∗)′Z∗)−1(Z∗)′ for the transformed
instruments Z∗ is identical to the corresponding projection matrix PZ = Z(Z ′Z)−1Z ′ for the
original instruments,

PZ∗ = Z∗((Z∗)′Z∗)−1(Z∗)

= ZH((ZH)′(ZH))−1(ZH)′

= ZH(H ′Z ′ZH)−1H ′Z ′

= ZHH−1(Z ′Z)−1(H ′)−1H ′Z ′

= Z(Z ′Z)−1Z ′ = PZ

Since the two-stage least squares estimator is defined as β̂2SLS = (X ′PZX)−1X ′PZy, it does not
change if PZ∗ replaces PZ .
Note that Z−1 does not exist because Z is not a square matrix.

5



4.3 2004 Exam, 3
Question: Consider the estimation of two scalar coefficients, β1 and β2, in the linear equation

y = x1β1 + x2β2 + ε

where y, x1, and x2 are observableN -dimensional random vectors. In addition, twoN -dimensional
vectors of instrumental variables, z1 and z2, are available. In a sample size of N = 227, the fol-
lowing matrix of cross-products of the variables is observed:

y′y y′x1 y′x2 y′z1 y′z2

x′1y x′1x1 x′1x2 x′1z1 x′1z2

x′2y x′2x1 x′2x2 x′2z1 x′2z2

z′1y z′1x1 z′1x2 z′1z1 z′1z2

z′2y z′2x1 z′2x2 z′2z1 z′2z2

 =


22 −11 10 8 8
−11 21 10 −8 −8
10 10 20 −2 0
8 −8 −2 6 4
8 −8 0 4 6


A. For these data, calculate the classical LS estimators β̂1 and β̂2 of the unknown regression coeffi-
cients, and compute the instrumental variables estimators β̂1 and β̂2 using z1 and z2 as instruments
for x1 and x2.

B. Suppose the error terms ε are independent of z1 and z2, so that V ar[ε|z1, z2] = σ2I , ie., ε has
a scalar covariance matrix. If you had to conduct a test of H0 : β2 = 1 versus HA : β2 6= 1 at
an asymptotic 5% level using the IV estimator, and were given a consistent estimator σ̃2 of the
unknown variance parameter σ2, how small would σ̃2 have to be to reject H0? That is, find the
largest value of σ̃2 for which you could (barely) reject the null hypothesis.

Answer: We first calculate the least squares and instrumental variable estimates using the usual
formulae.

β̂OLS =

(
β̂1

β̂2

)
= (X ′X)−1X ′y =

((
x1 x2

)′ (
x1 x2

))−1 (
x1 x2

)′ (
y
)

=

((
x′1
x′2

)(
x1 x2

))−1(
x′1
x′2

)(
y
)

=

(
x′1x1 x′1x2

x′2x1 x′2x2

)−1(
x′1y
x′2y

)
=

[
21 10
10 20

]−1( −11
10

)
=

1

320

[
20 −10
−10 21

](
−11
10

)
=

1

320

(
−320
320

)
=

(
−1
1

)
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β̂IV =

(
β̂1

β̂2

)
= (Z ′X)−1Z ′y =

((
z1 z2

)′ (
x1 x2

))−1 (
z1 z2

)′ (
y
)

=

((
z′1
z′2

)(
x1 x2

))−1(
z′1
z′2

)(
y
)

=

(
z′1x1 z′1x2

z′2x1 z′2x2

)−1(
z′1y
z′2y

)
=

[
−8 −2
−8 0

]−1(
8
8

)
=
−1

16

[
0 2
8 −8

](
8
8

)
=

1

16

(
−16

0

)
=

(
−1
0

)

Recall that the asymptotic variance matrix of the IV estimator is given by

AV ar(β̂IV ) = (Z ′X)−1Z ′V ar(y|X,Z)Z(X ′Z)−1

It is given that V ar(ε|Z) = V ar(y|Z) = σ2I . In addition for these data, Z ′X = X ′Z. It thus
follows that:

AV ar(β̂IV ) = (Z ′X)−1Z ′σ2IZ(X ′Z)−1

= σ2(Z ′X)−1Z ′IZ(Z ′X)−1

= σ2(Z ′X)−1Z ′Z(Z ′X)−1

= σ2

(
1

16

)[
0 −2
−8 8

] [
z′1z1 z′1z2

z′2z1 z′2z2

](
1

16

)[
0 −2
−8 8

]
= σ2

(
1

162

)[
0 −2
−8 8

] [
6 4
4 6

] [
0 −2
−8 8

]
= σ2

(
1

162

)[
96 80
−120 160

]
Replacing the unknown value of σ2 by an estimator σ̃2 would give ˆAV ar(β̂2) = σ̃2

(
5
8

)
. Thus, the

asymptotic t-test for H0 : β2 = 1 would reject the null hypothesis if

T =
|β2 − 1|√
V ar(β2)

=
|0− 1|√

(σ̃2)5
8

> 1.96⇒ σ̃2 < 1.6 ∗ 1.96−2 ≈ 0.4.
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4.4 2005 Exam, 3
Question: Suppose that, for the sample linear model with no intercept term,

yi = βxi + εi

that both zi = 1 and z2 = xi are valid instrumental variables for xi, that is

E(zi1εi) = E(εi) = 0

E(zi2εi) = E(xiεi) = 0

and

E(zi1xi) = E(xi) = µ 6= 0

E(zi2xi) = E(x2
i ) = τ 2 6= 0

A. Under the assumption that εi and xi are jointly i.i.d. and εi is independent of xi withE(ε2
i ) = σ2,

derive the asymptotic distribution of the IV estimators β̂1 and β̂2 which use zi1 = 1 or zi2 = xi,
respectively, as an instrument for xi, and compare the asymptotic variances of these two estimators.

B. Under the same assumptions as in part A, explicitly derive the asymptotic variance for the GMM
estimator β̂GMM which optimally uses both zi1 = 1 and zi2 = xi as instrumental variables, and
show that this variance reduces to the asymptotic variance of one of the estimators in part A. [Hint:
the relevant matrices MXZ and V0 can be written in term of the parameters given above.]

Answer: Recall the asymptotic distribution for the IV estimator:
√
n(β̂IV − β) −→d N(0, E(zix

′
i)
−1E(z2

i ε
2
i )E(xiz

′
i)
−1)

For zi1 = 1, E(z2
i ε

2
i ) = E(ε2

i ) = σ2.
E(zix

′
i) = E(x′i) = E(xi) = µ

As a result, the asymptotic variance is E(xi)
−1σ2E(xi)

−1 = σ2E(xi)
−2 = σ2µ−2.

Accordingly,
√
n(β̂1 − β) −→d N(0, σ2µ−2)

For zi2 = 1, E(z2
i ε

2
i ) = E(x2

i ε
2
i ) = E(x2

i )E(ε2
i ) = σ2E(x2

i ).
E(zix

′
i) = E(xi ∗ x′i) = E(x2

i ) = τ 2

As a result, the asymptotic variance is E(x2
i )
−1σ2E(x2

i )E(x2
i )
−1 = σ2E(x2

i )
−1 = σ2τ−2.

Accordingly,
√
n(β̂2 − β) −→d N(0, σ2τ−2).

We know that 0 < V ar(xi) = E(x2
i )− E(xi)

2 ⇒ E(x2
i ) > E(xi)

2 ⇒ E(x2
i )
−1 < E(xi)

−2.
As a result, AV ar(β̂1) < AV ar(β̂2) when using instrumental variables estimation.

Recall that the asymptotic variance for the β̂GMM is (X
′Z
n

(Z
′V̂ Z
n

)−1Z′X
n

)−1.
In this set-up, zi = (1, xi)

′ and V̂ = σ2I .
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X′Z
n

= 1
n

∑n
i=1 xiz

′
i = 1

n

∑n
i=1 xi(1, xi) = ( 1

n

∑n
i=1 xi,

1
n

∑n
i=1 x

2
i ) −→p (µ, τ 2).

Accordingly, XZ
′

n
−→p (µ, τ 2)′.

Looking at the middle term,
Z′V̂ Z
n

= σ2Z′Z
n

= σ2( 1
n

∑n
i=1 ziz

′
i) −→p σ

2E(ziz
′
i)

By Continuous Mapping Theorem, if E(ziz
′
i) 6= 0 then Z′V̂ Z

n

−1
−→p

1
σ2E(ziz

′
i)
−1.

1

σ2
E(ziz

′
i)
−1 =

1

σ2
E[(1, xi)

′(1, xi)] = σ2

(
1 µ
µ τ 2

)−1

=
1

σ2(τ 2 − µ2)

(
τ 2 −µ
−µ 1

)

Therefore, Asymptotic Var(β̂GMM) = (X
′Z
n

(Z
′V̂ Z
n

)−1Z′X
n

)−1 =

(
1

σ2(τ 2 − µ2)

(
µ τ 2

)( τ 2 −µ
−µ 1

)(
µ
τ 2

))−1

= σ2τ−2 = σ2(E(x2
i ))
−1.

Note that β̂GMM is equivalent to the second IV estimator that uses the instrument xi.

4.5 2006 Exam, 1A
Question: True/False/Explain. The Two-Stage Least Squares estimator β̂2SLS is unchanged if the
original NXL matrix of instrumental variables Z is replaced by a new matrix Z∗ of instruments if
Z∗ = HZ, where H is an invertible NXN matrix.

Answer: False. β̂2SLS is unchanged by using Z∗ in place of Z if PZ = PZ∗ because the projection
matrix is the only place in the estimator in which Z is used.

PZ∗ = Z∗((Z∗)′Z∗)−1(Z∗)′

= HZ((HZ)′(HZ))−1(HZ)′

= HZ(Z ′H ′HZ)−1Z ′H ′

Because we assume that N > L, neither Z nor ZH is invertible. As a result, this expression
cannot be simplied further and does not equal PZ = Z(Z ′Z)−1Z in general for all invertibleNXN
matrices H . For a specific Z there are many possible matrices for H that can satisfy PZ = PZ∗ ,
one of which is always the trivial case of the identity matrix, just as there are also many possible
matrices for H for which they would not be equal.

However, if Z∗ = ZH and H is LXL so that the dimensions are valid for multiplicaiton then the
statement would be true:
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PZ∗ = Z∗((Z∗)′Z∗)−1(Z∗)

= ZH((ZH)′(ZH))−1(ZH)′

= ZH(H ′Z ′ZH)−1H ′Z ′

= ZHH−1(Z ′Z)−1(H ′)−1H ′Z ′

= Z(Z ′Z)−1Z ′ = PZ

4.6 2006 Exam, 3
Question: Consider the two equation system

y = xβ + ε

x = Zπ + η

where y and x are observable T -dimensional vectors, ε and η are T -vectors of errors assumed
jointly independent across rows, β is a scalar unknown parameter, Z is an observable TXL matrix
of instrumental variables, and π is a L-dimensional vector of unknown coefficients. The error
terms ε and η are jointly independent of the instruments Z, and assumed to have E[ε] = E[η] =
0, E[εε′] = σ2I, E[ηη′] = τ 2I , and E[εη′] = γI , where γ may be nonzero (so x is endogenous in
the equation for y).

Suppose you are given an estimator π̂ from a separate sample (so it is statistically independent of
ε and η) that satisfies √

T (π̂ − π) −→d N(0, V )

Defining x̂ = Zπ̂, consider the following two estimators of the scalar parameter β: the ”instru-
mental variables” estimator

β̂IV = (x̂′x)−1x̂′y,

and the ”two-stage plug-in” estimator

β̂2S = (x̂′x̂)−1(x̂′y)

Assuming plimT−1Z ′Z = MZZ = E[ztz
′
t] has π′MZZπ 6= 0, derive the limiting distributions of√

T (β̂IV − β) and
√
T (β̂2S − β), assuming the relevant Law of Large Numbers and Central Limit

Theorems apply. Are these asymptotic distributions the same? If not, is one more efficient than the
other in general?

Hint: Substitute the equation for y into the expression for the estimators, and, where necessary,
substitute x = x̂ + (x − x̂) = x̂ + Z(π − π̂) + η as well. Note there is a typo in the hint on the
actual exam.

Answer: The asymptotic distributions are not the same. We first analyze β̂IV and use many of the
same calculations to analyze β̂2S .
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β̂IV = (x̂′x)−1x̂′y

= (x̂′x)−1x̂′(xβ + ε)

= (x̂′x)−1x̂′xβ + (x̂′x)−1x̂′ε

= β + (x̂′x)−1x̂′ε

⇒ β̂IV − β = (x̂′x)−1x̂′ε

= ((Zπ̂)′(Zπ + η))−1((Zπ̂)′ε)

= (π̂′Z ′(Zπ + η))−1(π̂′Z ′ε)

= (π̂′Z ′Zπ + π̂′Z ′η)−1(π̂′Z ′ε)

= (T−1π̂′Z ′Zπ + T−1π̂′Z ′η)−1(T−1π̂′Z ′ε)

⇒
√
T (β̂IV − β) = (T−1π̂′Z ′Zπ + T−1π̂′Z ′η)−1

√
T (T−1π̂′Z ′ε)

We proceed by analyzing each of the three terms separately. We will then apply Slutsky’s Theorem
to the sum and then again to the product to determine the overall distribution. In doing so we must
also apply Slutsky’s Theorem to each term along the way. We will proceed from left to right.

By assumption
√
T (π̂ − π) −→d N(0, V ).

This distribution implies that π̂ −→p π ⇒ π̂′ −→p π
′ ⇒ π̂′ −→d π

′

It is given that plimT−1Z ′Z = MZZ = E[ztz
′
t].

As a result of Slutstky’s Theorem, T−1π̂′Z ′Zπ −→p π
′MZZπ

Now we analyze the second term and exploit the assumption that η is independent of Z.
( 1
T

∑T
t=1 ztηt) −→p E(ztηt) = E(zt)E(ηt) = 0 by law of large numbers because ztηt is iid and

V ar(ztηt) = E(ztηtη
′
tzt)− E(ztηt)

2 = τ 2E(ztz
′
t) is finite.

As a result of Slutsky’s Theorem, T−1π̂′Z ′η −→p π
′ ∗ 0 = 0.

As a result of Slutsky’s Theorem, (T−1π̂′Z ′Zπ + T−1π′Z ′η) −→p π
′MZZπ + 0 = π′MZZπ.

It is assumed that π′MZZπ 6= 0 and thus its inverse exists.
As a result of the Continuous Mapping Theorem, (T−1π̂′Z ′Zπ+T−1π′Z ′η)−1 −→p (π′MZZπ)−1.

Now we analyze the asymptotic distribution of the third term.
E(ztεt) = E(zt)E(εt) = 0 by independence and ztεt is iid.
V ar(ztεt) = E(ztεtε

′
tz
′
t)− 0 = σ2E(ztz

′
t) = σ2Mzz.

As a result of the Central Limit Theorem,
√
T (T−1Z ′ε) −→d N(0, V ar(ztεt)) = N(0, σ2Mzz).

By Slutsky’s Theorem,
√
T (T−1π̂′Z ′ε) −→d π

′N(0, σ2Mzz) ∼ N(0, σ2π′Mzzπ).

Lastly we apply Slutsky’s Theorem to the entire expression:√
T (β̂IV − β) −→d (π′Mzzπ)−1N(0, σ2π′Mzzπ) ∼ N(0, (π′Mzzπ)−1σ2π′Mzzπ(π′Mzzπ)−1) ∼

N(0, σ2(π′Mzzπ)−1).

Now we analyze the asymptotic distribution of β̂2S .
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β̂2S = (x̂′x̂)−1x̂′y

= (x̂′x̂)−1x̂′(xβ + ε)

= (x̂′x̂)−1x̂′((x̂+ Z(π − π̂) + η)β + ε)

= (x̂′x̂)−1x̂′x̂β + (x̂′x̂)−1(x̂′Z(π − π̂)β + x̂′ηβ + x̂′ε)

⇒ β̂2S − β = (x̂′x̂)−1(x̂′Z(π − π̂)β + x̂′ηβ + x̂′ε)

= (T−1x̂′x̂)−1(T−1(x̂′Z(π − π̂)β + x̂′ηβ + x̂′ε)

⇒
√
T (β̂2S − β) = (T−1x̂′x̂)−1

√
T (T−1x̂′Z(π − π̂)β + T−1x̂′ηβ + T−1x̂′ε)

= (T−1(Zπ̂)′(Zπ̂))−1
√
T (T−1(Zπ̂)′Z(π − π̂)β + T−1(Zπ̂)′ηβ + T−1(Zπ̂)′ε)

= (T−1π̂′Z ′Zπ̂)−1[(T−1π̂′Z ′Z)
√
T (π − π̂)β +

√
T (T−1(π̂′Z ′ηβ + π̂′Z ′ε))]

= (T−1π̂′Z ′Zπ̂)−1[(T−1π̂′Z ′Z)
√
T (π − π̂)β] + (T−1π̂′Z ′Zπ̂)−1[π̂′

√
T (T−1Z ′ηβ + T−1Z ′ε)]

= T1 + T2

T1 and T2 are asymptotically independent because the limiting distribution of T1 depends on π̂,
which is statistically independent of η and ε, the drivers of the limiting distribution of T2. We
analyze the distribution of each separately.

Using the previous calculations, we can use Slutsky’s Theorem twice to show that (T−1π̂′Z ′Zπ̂) −→p

π′Mzzπ, and as a result of the Continuous Mapping Theorem, (T−1π̂′Z ′Zπ̂)−1 −→p (π′MZZπ)−1.

It is given that
√
T (π̂ − π) −→d N(0, V ).

This distribution implies that
√
T (π − π̂) = −

√
T (π̂ − π) −→d N(0, (−1)V (−1)) ∼ N(0, V ).

We now apply Slutsky’s Theorem to T1 to show that

(T−1π̂′Z ′Zπ̂)−1[(T−1π̂′Z ′Z)
√
T (π − π̂)β]

−→d (π′MZZπ)−1π′MZZβN(0, V )

∼ N(0, (π′MZZπ)−1π′MZZβV βMZZπ(πMZZπ)−1)

We now analyze the limiting distribution of T2 and first apply the Central Limit Theorem to√
T (T−1Z ′ηβ + T−1Z ′ε).

η and ε are iid and jointly independent so (Z ′ηβ + Z ′ε) is iid.
E(T−1Z ′ηβ + T−1Z ′ε) = 0 because Z is orthogonal to η for the first-stage to the well specified
and orthogonal to ε for it to be a valid instrument.
We now calculate the variance and confirm that it is finite.

V ar(T−1Z ′ηβ + T−1Z ′ε) = V ar(Z ′ε) + V ar(Z ′ηβ) + 2Cov(Z ′ε, Z ′ηβ)

= E(Z ′Z)V ar(ε) + β2V ar(η)E(Z ′Z) + 2βE(Z ′εη′Z)

= σ2MZZ + τ 2MZZ + 2MZZβγ

12



We thus apply the Central Limit Theorem to show that
√
T (T−1Z ′ηβ+T−1Z ′ε) −→d N(0, (σ2 +

β2τ 2 + 2γβ)MZZ).

We now apply Slutsky’s Theorem to T2 to show that

(T−1π̂′Z ′Zπ̂)−1[π̂′
√
T (T−1Z ′ηβ + T−1Z ′ε)]

−→d (π′MZZπ)−1π′N(0, (σ2 + β2τ 2 + 2γβ)MZZ)

∼ N(0, (σ2 + β2τ 2 + 2γβ)[(π′MZZπ)−1π′]MZZ [π(π′MZZπ)−1])

∼ N(0, (σ2 + β2τ 2 + 2γβ)[(π′MZZπ)−1])

By asymptotic independence of T1 and T2,
√
T (β̂2S − β) −→d N(0, A−1BA−1 + A−1(σ2 + β2τ 2 + 2γβ))

where A = π′MZZπ and B = π′MZZVMZZπ.

Therefore, the limiting distribution of
√
T (β̂2S − β) differs from

√
T (β̂IV − β).

5 Additional Exercises
This section includes solutions to previous 240B exam questions that have not already been dis-
tributed. Excluded questions are those about maximum likelihood estimation from the 2002 and
2003 exam as well as recycled questions as seen in the 2005 exam and question 1D in 2006.

5.1 2003 Exam, 1D
Question: By the Continuous Mapping theorem, if θ̂ is root-n consistent and asymptotically normal
for the scalar parameter θ0, then its squared value, when multiplied by an appropriate function of
n, should have a limiting chi-square distribution.

Answer: False. As we will show though the statement is true only for θ0 = 0.
If θ0 6= 0 then the delta method implies that the asymptotic distribution of θ2 is nomral, not chi-
squared. Letting g(θ) = θ2 with derivative g′(θ) = 2θ, and assuming

√
n(θ̂ − θ0) −→d N(0, V0)

the delta method implies that

√
n(θ̂2 − θ2

0) −→d N(0, [g′(θ)]2V0) = N(0, 4θ2
0V0)

Thus, the squared value θ̂2 is equal to θ2
0 plus an asymptotically normal variable, and cannot be

rescaled to be asymptotically chi-squared.

However, if θ0 = 0, then this statement is true if we scale θ̂2 by n wherein
√
nθ̂ −→d N(0, V0).
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Recall that if ZN =
√
N(θN − θ0) −→d N(0, Ip) then T = Z ′NZN = N(θ̂− θ0)

′(θ̂− θ0) −→d χ
2
p

where p = dim(θ̂N)

*Note that this statement comes directly from Professor Powell’s lecture notes though he has a
very important typo. Instead he has Σ listed as the variance-covariance matrix rather than Ip.

Therefore, if θ0 = 0,
(
n
V0

)
θ̂2 −→d χ

2
1 because

(√
N
V0

)
θ̂ −→d N(0, 1).

5.2 2006 Exam, 1C
Question: If yt is a stationary AR(2) process with no intercept term - specifically, yt = β1yt−1 +
β2yt−2 + εt, where εt is an i.i.d process with zero mean and all moments finite - then an asymptot-
ically valid test of the null hypothesis H0 : β1 = 0 can be based upon the first-order (non-constant
adjusted) sample autocovariance of yt and yt−1,

γ̂ = T−1

T∑
t=1

ytyt−1

Assuming the relevant Central Limit Theorem applies to this average, the estimator γ̂ will have
an approximate normal distribution which is centered at zero under H0, so a t-statistic can be
constructed using γ̂ to obtain a large sample test of this null hypothesis.

Answer: True. Immediately, we impose the null hypothesis that β1 = 0 because of our interest
in the asymptotic distribution of γ̂ under the null. Doing so simplifies the analysis immensly to
yt = β2yt−2 + εt.

Our goal is to argue that γ̂ will have an approximate normal distribution and that it will be cen-
tered at zero under H0. We argue that it will an approximate normal distribution because we are
granted the assumption that the relevant Central Limit Theorem applies to this average. As a result,√
T (γ̂ − µ) −→d N (0, V0) where µ = E(γ̂) and V0 is the asymptotic variance.

Next we demonstrate that that approximate normal distribution is centered at zero because µ = 0.
In doing so we exploit the stationarity of yt wherein E(yt) = E(yt−2) and Cov(yt, yt−1) =
Cov(yt−1, yt−2) = γ1.

We first exploit stationarity to show that evaluating µ reduces to evaluating E(ytyt−1) :
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µ = E(γ̂)

= E(T−1

T∑
t=1

ytyt−1)

= T−1E(
T∑
t=1

ytyt−1)

= T−1 ∗ T ∗ E(ytyt−1)

= E(ytyt−1)

We now show that E(yt) = 0 and β2 6= 1 :

E(yt) = E(β2yt−2) + E(εt)

= β2E(yt2) + 0

= β2E(yt)

⇒ (1− β2)E(yt) = 0

⇒ E(yt) =
0

1− β2

= 0

⇒ β2 6= 1

Finally we show that E(ytyt−1) = 0 :

E(ytyt−1) = Cov(yt, yt−1) + E(yt)E(yt−1)

= γ1 + 0

= Cov(β2yt−2 + εt, yt−1)

= β2Cov(yt−2, yt−1) + Cov(yt−1, εt)

= β2γ1 + 0

⇒ (1− β2)γ1 = 0

⇒ γ1 = 0

As a result,
√
T γ̂ is a normalized average of mean-zero stationary random variables, which will

have a limiting normal distribution that is centered at zero.

Given an estimator of the asymptotic variance of
√
T γ̂, which is V0 in the expression above, a

t-statistic can be constructed using γ̂ to obtain a large sample test of this null hypothesis because
asymptotically it will be a standard normal random variable under H0.
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5.3 2006 Exam, 2
Question: Suppose θ̂ is an asymptotically normal estimator of a 3-dimensional parameter θ =
(θ1, θ2, θ3)

′, which has the asymptotic distribution
√
N(θ̂ − θ) −→d N(0, V )

Suppose that θ̂ = (1,−1,−2)′ is the realized value of this estimator, and that a consistent estimator
V̂ of V has the realized value  50 0 0

0 50 0
0 0 100


where it is assumed that the sample N = 597 is large enough so that the normal approximation is
accurate for this problem.
Use these results to test the joint null hypothesisH0 : θ2

1+θ2
2 = 1 and θ2

3 = 1, against the alternative
that one or both of these restrictions fail, at an asymptotic 5% level.

Answer: We approximate a Wald statistic, which converges in distribution to a chi-squared distri-
bution, and fail to reject H0 based on this test statistic.

The general form of the Wald statistic for H0 : θ̂ = θ0 against H1 : θ̂ 6= θ0 is Wn = n(θ̂ −
θ0)
′(V̂0)

−1(θ̂ − θ0) where V̂0 is the asymptotic covariance matrix estimate of θ̂.

We first write the hypotheses so that θ0 = 0 for each one. We then stack them into the matrix γ:

γ = g(θ) =

(
θ2
1 + θ2

2 − 1
θ2
3 − 1

)
Using our estimate for θ̂ = (1,−1,−2)′, g(θ̂) = (1, 3)′ and by construction g(θ) = (0, 0)′ so
g(θ̂)− g(θ) = (1, 3)′.

By the Delta Method,
√
N(γ̂ − γ0) −→d N(0, V0) where V0 = GV G′. V is as previously defined

and it is given that V̂ −→p V . G = ∂g
∂θ′

, and by the continuous mapping theorem Ĝ −→p G where

Ĝ =
∂g

∂(θ1, θ2, θ3)′
=

(
2θ̂1 2θ̂2 0

0 0 2θ̂3

)
=

(
2 −2 0
0 0 −4

)
We thus compute the Wald statistic, Wn = n(γ̂ − γ0)

′(V̂0)
−1(γ̂ − γ0) where ĜV̂ Ĝ′ −→p GV G

′.

Because G has full rank 2, GV G′ is positive semi-definite. As a result we can use the Chloesky

Decomposition to reexpress this statistic as Wn =
√
n(γ̂ − γ0)

′V̂0
− 1

2 ′V̂0
− 1

2
√
n(γ̂ − γ0) = Z ′Z

where Z = V̂0

− 1
2
√
n(γ̂−γ0). Using the previously established result of the Delta Method, Z −→d

N(0, V0
− 1

2V0V0
− 1

2 ′) = N(0, I2). As a result, Wn = Z ′Z −→d χ
2
2.
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(ĜV̂ Ĝ′)−1 =

( 2 −2 0
0 0 −4

) 50 0 0
0 50 0
0 0 100

 2 0
−2 0
0 −4

−1

=

( 100 −100 0
0 0 −400

) 2 0
−2 0
0 −4

−1

=

(
400 0
0 1600

)−1

=

(
400

(
1 0
0 4

))−1

=
1

400

(
1 0
0 1

4

)
γ′(ĜV̂ Ĝ′)−1γ =

1

400

(
1 3

)( 1 0
0 1

4

)(
1
3

)
=

1

400
(1 +

9

4
) =

9

1600

Wn = nγ′(ĜV̂ Ĝ′)−1γ =
(9)(597)

1600

<
(10)(600)

1600
<

60

16
< 4

The 5% critical value for χ2
2 is 5.99, which exceeds our approximated Wald statistic by a non-

negligble amount.

Therefore we fail to reject H0.
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1 Question 1A
Question: Suppose that an IV regression of yi on a scalar endogenous regressor xi1 and a vector
xi2 of exogenous regressors, using an instrument vector zi that includes the xi2 components, yields
a coefficient on xi1 of 2.2. If, instead, xi1 is taken to be the dependent variable, and an IV fit of xi1

on yi and xi2 is calculated using the same instruments zi, then the IV estimate of the coefficient on
yi will be positive.

Answer: True. We estimate both models with β̂2SLS because it is equivalent to β̂IV in the just-
identified case and more straightforward to analyze in partitioned regression. Moreover doing so
encompasses the over-identified case where dim(zi) >dim(x1i).

We first analyze yi = x1iβ1 + x′2iβ2 + εi that we instrument with zi and x2i.
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In the just-identified case X ′Z and Z ′X are square. Let PZ = Z(Z ′Z)−1Z ′. As a result

β̂2SLS = (X ′PZX)−1X ′PZy

= (X ′Z(Z ′Z)−1Z ′X)−1X ′Z(Z ′Z)−1Z ′y

= (Z ′X)−1(Z ′Z)(X ′Z)−1X ′Z(Z ′Z)−1Z ′y

= (Z ′X)−1Z ′y

= β̂IV

Thus in the just-identified case an equivalent instrumental variables estimtor comes from the re-
gression of ŷ = PZy on X̂ = PZX .

We estimate the scalar β̂1 by partitioned regression to isolate the relationship between x1i on yi.
Let P2 = I − X̂2(X̂ ′

2X̂2)
−1X̂ ′

2. Then

β̂1 = (X̂ ′
1P2X̂1)

−1(X̂ ′
1P2ŷ)

P2 is a projection matrix so we can express the denominator as X̂ ′
1P2X̂1 = X̂ ′

1P
′
2P2X̂1 = ‖P2X̂1‖,

which must be positive since it a norm that is invertible. Thus the numerator must be positive
because it must have the same sign as β̂1.

We now analyze the reverse regression: x1i = yiδ1 + x′2iδ2 + ηi with the same instruments so we
proceed as before with 2SLS. In the partitioned regression P2 remains the same since we are again
partialing out the effect of x′2i on both yi and x1i. Then

δ̂1 = (ŷ′P2ŷ)−1(ŷ′P2X̂1)

Like β̂1 the denominator can be reexpressed as ‖P2ŷ‖, which is a norm that must be positive.
Moreover the numerator is the same as that of β̂1 because it is the transpose of a scalar; thus it is
positive.

Therefore δ̂1 is positive: sgn(β̂) = sgn(δ̂) = sgn(X̂1

′
M2ŷ) = sgn(ŷ′M2X̂1).

2 Question 1B
Question: In the linear model with a lagged dependent variable, yt = x′tβ + γyt−1 + εt, suppose
the error terms are MA(1), i.e., εt = ut + θut−1, where ut is an i.i.d. sequence with zero mean,
variance σ2, and is independent of xs for all t and s. For this model, the classical LS estimator will
be inconsistent for β and γ when |γ| < 1, but an IV estimator using xt and yt−2 as instrumental
variables will consistently esimate these parameters.

Answer: True. First we show that the OLS estimator will be inconsistent and then that this IV
estimator will be consistent. Note that throughout this question that xt is an exogenous regressor
because ut is independent of xs for all t and s.
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The OLS estimator is inconsistent because yt−1 is an endogenous regressor. γ̂OLS will thus be
inconsistent because yt−1 is not uncorrelated with εt.

Cov(yt−1, εt) = Cov(yt−1, ut + θut−1)

= Cov(yt−1, ut) + θCov(yt−1, ut−1)

Lagging the model one period, yt−1 = x′t−1β +γyt−2 +εt−1 = x′t−1β +γyt−2 +ut−1 +θut−2. This
representation makes it clear that a current or future shock does not affect yt−1 since they would
be uncorrelated with any of the regressors or error terms. However in general, θCov(yt−1, ut−1) =
θσ2 6= 0 unless θ = 0 since ut−1 is only correlated with ut−1 in the expression for yt−1.

Through partitioned regression, β̂OLS is inconsistent because its estimation is related to the en-
dogenous regressor.

Thus, the OLS estimator for β and γ will not be consistent.

An IV estimator though can consistently estimate the parameters if we have a valid instrument
for the endogenous regressor, yt−1. In this question, we consider whether yt−2 as such a valid
instrument.

For it to be a valid instrument, it must satisfy two conditions:
1. Cov(yt−2, yt−1) 6= 0
2. Cov(yt−2, εt) = 0

1. Cov(yt−2, yt−1) = Cov(yt−2, x
′
t−1β + γyt−2 + εt−1)

= Cov(yt−2, xt−1)
′β + γCov(yt−2, yt−2) + Cov(yt−2, εt−1)

γCov(yt−2, yt−2) = γV ar(yt−2) 6= 0 in general unless γ = 0.
Moreover Cov(yt−2, εt−1) = Cov(yt−1, εt) 6= 0 in general unless θ = 0 as previously discussed.
We thus expect that in general, Cov(yt−2, yt−1) 6= 0, unless say γ = θ = 0.

2. Cov(yt−2, εt) = Cov(yt−2, ut + θut−1)

= Cov(yt−2, ut) + Cov(yt−2, θut−1)

As we previously discussed, both of these terms are zero because future shocks are not related to
the output of later periods.

Therefore absent some multicollinearity problem between yt−2 and x, yt−2 is a valid instrument for
yt−1, in contrast to the case with AR(1) errors. As a result, an IV estimator using xt and yt−2 as
instruments for xt and yt−1 will consistently estimate the parameters, β and γ.
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3 Question 1C
Question: For a balanced panel data regression model with individual fixed effects, yit = x′itβ +
αi + εit - where the αi are not assumed to be uncorrelated with xit, but the error terms εit are
i.i.d. and independent of αi and xit, with E(εit) = 0 and V ar(εit) = σ2 - suppose that only
the number of time periods T tends to infinity, while the number of individuals N stays fixed.
Then the ”fixed effect” estimator for β will be consistent as T → ∞ provided the regressors
and individual indicator variables are not asymptotically multicollinear. Furthermore, if σ̂2 =
(NT )−1(yit− α̂i− x′itβ̂LS)2 is the (biased) LS estimator of σ2, then the usual LS formulae for the
standard errors of β̂LS (replacing the unknown σ2 by σ̂2) will be asymptotically valid.

Answer: True. We proceed by showing separately that both parts of the statement are true.

The Fixed Effects estimator is the classical least squares regression of yit on xit and N binary
variables. It is given that the assumptions of the classical regression model are satisfied. As a result,
for a fixed N, β̂OLS and α̂i for i = 1, ..., N are unbiased, and assuming that there is no asymptotic
multicollinearity, then they are also consistent and asymptotically normal with the usual form for
the asymptotic covariance matrix.

Finally the usual biased MLE estimator σ̂2 of σ2 is consistent since, as T → ∞ when N is fixed,
the ratio of σ̂2 approaches the unbiased and consistent s2. We can see this by analyzing the ratio in
the limit.

σ̂2

s2
=

NT − (N + K)

NT
→ 1.

4 Question 1D
Question: By the so-called ”Delta Method”, if θ̂ is root-n consistent and asymptotically normal for
a vector parameter θ0, then the difference bewteen the squared length of θ̂ and the squared length
of θ0, when multiplied by the square root of the sample size, will generally have a limiting normal
distribution.

Answer: True. The statement is generally true and is false in the case of θ0 = 0.

There exists a V0 such that
√

N(θ̂ − θ0) −→d N(0, V0).

We are interested in the asymptotic properties of θ̂′θ̂. Let δ̂ = g(θ̂) = θ̂′θ̂.

Since g is a differentiable function of θ, then by the Delta Method,
√

N(δ̂−δ0) −→d N(0, G0V0G
′
0)

where δ̂ = g(θ̂) = θ̂′θ̂, δ0 = g(θ0) = θ′0θ0, and G0 = ∂g(θ0)
∂θ

= 2θ′0.

Accordingly,
√

Nδ̂ −→d N(δ0, 2θ
′
0V02θ0).
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Therefore the statement is generally true that the distribution will be normal because 2θ′0V02θ0 =
4θ′0V0θ0 6= 0 in general.

However in the special case that θ0 = 0, that is a vector of zeros, then the estimator converges to a
singular normal limiting distribution with zero variance.

We could normalize θ̂ so its asymptotic distribution is standard normal: V
− 1

2
0

√
N(θ̂ − θ0) −→d

N(0, Ik) where k = dim(θ̂). If θ0 = 0 then V
− 1

2
0

√
Nθ̂ −→d N(0, Ik).

Then Nθ̂′V −1
0 θ̂ −→d χ2

k.

Therefore in the case of θ0 = 0, a better asymptotic approxmation would be based on the difference
between the squared length of θ̂ and the squared length of θ0, when multiplied by the sample size.
That is, we would not want to use the square root of the sample size. This limiting distribution
would be chi-squared rather than gaussian.

5 Question 2
Question: Suppose a dependent variable yi and two (scalar) regressors xi and zi satisfy a random
coefficients model

yi = αi + βixi + γizi, i = 1, ..., N,

where the coefficients (αi, βi, γi) are assumed to be i.i.d. and independent of xi and zi. In this
framework, under the null hypothesis H0 : V ar(βi) = 0 = V ar(γi), the mean values β = E(βi)
and γ = E(γi) can be estimated by a least-squares regression of yi; in turn, this null hypothesis
can be tested using R2 from a least-squares regression of LS residuals êi = (yi − α̂− β̂xi − γ̂zi)

2

on functions of the regressors.

Given a sample of size N = 500, derive the algebraic form of all of the regressors in this ”squared
residual regression”, and give a numerical value for the critical value C for an (asymptotic) 5 %
test of homoskedasticity using the second-stage R2. i.e., the value for which H0 will be rejected if
R2 > C with asymptotic size 5 %.

Answer: As we will derive the squared residual regression has a constant and 5 regressors: xi, zi,
xizi, x2

i , and z2
i . The critical value is C = 0.02214.

We seek to reexpress our model so that we can collect all disturbances in one term and that there
is a null hypothesis such that it satisfies the assumptions of the classical regression model, namely
homoskedasticity.

First, we reexpress yi = αi + βixi + γizi as yi = α + βxi + γzi + εi.

By setting these two expressions equal to each other, εi = (αi − α) + (βi − β)xi + (γi − γ)zi.
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Note that E(εi) = E[(αi − α) + (βi − β)xi + (γi − γ)zi] = 0 by the assumptions that E(βi) = β,
E(γi) = γ, and the additional assumption that E(αi) = α.

As a result E(ε2
i ) = V ar(εi), which equals

V ar(εi) = V ar[(αi − α) + (βi − β)xi + (γi − γ)zi]

= V ar(αi − α) + V ar((βi − β)xi)) + V ar((γi − γ)zi)+

2Cov((αi − α), (βi − β)xi) + 2Cov((αi − α), (γi − γ)zi) + 2Cov((βi − β)xi, (γi − γ)zi)

= σ2
α + σ2

βx2
i + σ2

γz
2
i + 2σαβxi + 2σαγzi + 2σβγxizi

= σ2
α(1 +

2σαβ

σ2
α

xi +
2σαγ

σ2
α

zi +
2σβγ

σ2
α

xizi +
σ2

β

σ2
α

x2
i +

σ2
γ

σ2
α

z2
i )

Accordingly we analyze ε2
i = σ2

α + δ2xi + δ3zi + δ4xizi + δ5x
2
i + δ6z

2
i + ri, where we assume that

ri is a random disturbance term and each δ corresponds with the previously derived coefficient.
Moreover we we assume this model satisfies the classical regression assumptions, namely that the
disturbance term is expectation zero and homoskedastic.

We test the null hypothesis that H0 : δ2 = δ3 = δ4 = δ5 = δ6 = 0 because under the null ε is
homoskedastic since V ar(εi) = σ2

α ∀i.

By Breusch-Pagan (1979) we can test this hypothesis by the following three steps:

First we collect the least squared residuals, êi, and use ordinary least squares to estimate the pa-
rameters of êi = σ2

α + δ2xi + δ3zi + δ4xizi + δ5x
2
i + δ6z

2
i + ri.

Second we compute R2.

Third we reject the null hypothesis at the asymptotic 5 % level if NR2 > χ2
5(5%) where N is

the sample size. That is we reject the hypothesis of homoskedasticity if R2 >
χ2

5(5%)

N
= 11.07

500
=

22.14
1000

= 0.02214. Note that we have 5 degrees of freedom because our null hypothesis tests that 5
parameters all equal zero.

6 Question 3
Question: A feasible GLS fit of the generalized regression model with K = 3 regressors yields the
estimates β̂ = (2,−2,−1) where the GLS covariance matrix V = σ2[X ′Ω−1X]−1 is estimated as

V̂ =

 2 0 1
0 1 0
1 0 1


using consistent estimators of σ2 and Ω. The sample size N = 403 is large enough so that it is
reasonable to assume a normal approximation holds for the GLS estimator.
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Use these results to test the null hypothesis H0 : β2
1 + β2

2 + β2
3 = 1 at an asymptotic 5 % level.

Answer: We fail to reject the null hypothesis by using the delta method to construct an approximate
t-statistic.

Recall that
√

N(β̂GLS − β) −→d N(0, V ) where V = σ2(X ′Ω−1X)−1. We are given a V̂ such
that V̂ −→p V .

We are interested in the limiting distribution of θ̂ = g(β̂) = ‖β̂‖2 = β̂′β̂, which we analyze by the
Delta Method:

√
N(θ̂ − θ) −→d N(0, GV G′) where

G =
∂g(β)

∂β′

=
∂(β′β)

∂β′

= 2β′ = 2(β1, β2, β3)
′

Therefore an approximate test statistic is θ̂−θ√
GV G′

A∼ N(0, 1).

We estimate G with Ĝ because Ĝ −→p G by the Continuous Mapping Theorem where

Ĝ = 2(β̂1, β̂2, β̂3)

= 2(2,−2,−1)

= (4,−4,−2)

By Slutsky’s Theorem ĜV̂ Ĝ′ −→p GV G′ where

ĜV̂ Ĝ′ =
(

4, −4, −2
)
∗

 2 0 1
0 1 0
1 0 1

 ∗

 4
−4
−2


=

(
6, −4, 2

)  4
−4
−2


= 36

Thus to test H0 : θ = 1 against a two-sided alternative, the t-statistic is

θ̂ − θ0√
ĜV̂ Ĝ′

=
[22 + (−2)2 + (−1)2]− 1√

36
=

8

6
< 1.34

which is less than 1.96, the upper 97.5% critical value of a standard normal. We thus fail to reject
H0 at an asymptotic 5% level. As is often the case, the sample size N = 403 does not directly
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figure into the solution, though it is implicit in the estimate V̂ of the approximate covariance matrix
of β̂.

An alternative solution entails deriving an approximate Wald statistic though it is simpler to com-
pute a t-statstic since there is only one degree of freedom.

7 Question 4
Question: If yt is an MA(1) process with zero mean, i.e., if

yt = εt + θεt−1, εtWN(σ2)

and if γ(s) = Cov(εt, εt−s) is the autocovariance function and ρ(s) = γ(s)
γ(0)

is the autocorrelation
function of yt, show that

−1 < cL ≤ ρ(1) ≤ cU < 1,

i.e., the first autocorrelation is strictly bounded away from -1 and 1, by calculating the maximum
and minimum values cU and cL of ρ(1) over all possible θ.

Answer: First we calculate ρ(1) = γ(1)
γ(0)

.

γ(0) = V ar(yt)

= V ar(εt + θεt−1)

= V ar(εt) + V ar(θεt−1) + 2Cov(εt, θεt−1)

= σ2 + θ2V ar(εt−1) + 0

= σ2 + θ2σ2

= σ2(1 + θ2)

γ(1) = Cov(yt, yt−1)

= Cov(εt + θεt−1, εt−1 + θεt−2)

= Cov(εt, εt−1) + Cov(εt, θεt−2) + Cov(θεt−1, εt−1) + Cov(θεt−1, θεt−2)

= θCov(εt−1, εt−1)

= θV ar(εt−1)

= θσ2

Note that Cov(εt, εt−1) = 0 because the shocks of different periods are assumed to be independent
of one another in a white noise process. Moreover V ar(εs) = σ2 ∀s.

Accordingly, ρ(1) = θσ2

σ2(1+θ2)
= θ

(1+θ2)
.

Next we seek to show that this function is strictly bounded away from −1 and 1 by calculating its
maximum and minimum value over all possible θ. We proceed by analyzing the first derivative of
ρ(1).
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dρ(1)

dθ
=

(1 + θ2)(1)− (θ)(2θ)

(1 + θ2)2

=
1− θ2

(1 + θ2)2

=
(1 + θ)(1− θ)

(1 + θ2)2

This expression equals zero if θ = 1 or θ = −1.

At θ = 1, ρ(1) = 1
1+12 = 1

1+1
= 1

2
.

At θ = −1, ρ(1) = −1
1+(−1)2

= −1
1+1

= −1
2
.

At the extreme value on the right, as θ →∞, ρ(1) → 0.
At the extreme value on the left, as θ → −∞, ρ(1) → 0.

We confirm that the maximum value occurs at θ = 1 and the minimum value occurs at θ = −1 by
the second derivative.

d2ρ(1)

dθ2
=

(1 + θ2)2(−2θ)− (1− θ2)(2)(1 + θ2)(2θ)

(1 + θ2)4

=
−2θ(1 + θ2)2 − 4θ

(1 + θ2)4

=
(1 + θ)(1− θ)

(1 + θ2)2

Therefore, |ρ(1)| is strictly bounded by 1. Specifically, −1 < −1
2
≤ ρ(1) ≤ 1

2
< 1.
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